Answer:
Decreases.
Explanation:
The rise in temperature of gas increases the kinetic energy of its molecules and they rush out of water instead of dissolving similarly as air rushes out of boiling water in form of bubbles
The correct answer to the question is : D) 352.6 m/s.
CALCULATION :
As per the question, the temperature is increased from 30 degree celsius to 36 degree celsius.
We are asked to calculate the velocity of sound at 36 degree celsius.
Velocity of sound is dependent on temperature. More is the temperature, more is velocity of sound.
The velocity at this temperature is calculated as -
V = 331 + 0.6T m/s
= 331 + 0.6 × 36 m/s
= 331 + 21.6 m/s
= 352.6 m/s.
Here, T denotes the temperature of the surrounding.
Hence, velocity of the sound will be 352.6 m/s.
Answer: The result of "the upper bound of the density" does not go on the denominator.
So simplified, no. The answer is no.
<h3>Answer</h3>
1104 km/hour
<h3>Explanation</h3>
Distance between Dallas Texas to New York = 2760 km
Time the plane took from Dallas to New York = 2 hours
Time the plane took from New York back to Dallas = 2.5 hours
Formula to use
<h3>distance = speed x time </h3>
Speed the plane took from Dallas to New York
2760 = 2 x speed
speed = 2760 / 2
= 1380 km/hour
Speed the plane took from New York to Dallas (ROUND TRIP)
2760 = 2.5 x speed
speed = 2760 / 2.5
= 1104 km/hour
Answer:
Electric potential = 0.00054 V
Explanation:
We are given;
Charge; q = 3 pC = 3 × 10^(-12) C
Radius; r = 2 cm = 0.02 m
Formula for the electric potential of this surface will be;
V = kqr
Where;
K is a constant = 9 × 10^(9) N⋅m²/C².
Thus;
V = 9 × 10^(9) × 3 × 10^(-12) × 0.02
V = 0.00054 V