Density = (mass) divided by (volume)
We know the mass (2.5 g). We need to find the volume.
The penny is a very short cylinder.
The volume of a cylinder is (π · radius² · height).
The penny's radius is 1/2 of its diameter = 9.775 mm.
The 'height' of the cylinder is the penny's thickness = 1.55 mm.
Volume = (π) (9.775 mm)² (1.55 mm)
= (π) (95.55 mm²) (1.55 mm)
= (π) (148.1 mm³)
= 465.3 mm³
We know the volume now. So we could state the density of the penny,
but nobody will understand what we have. Here it is:
mass/volume = 2.5 g / 465.3 mm³ = 0.0054 g/mm³ .
Nobody every talks about density in units of ' gram/(millimeter)³ ' .
It's always ' gram / (centimeter)³ '.
So we have to convert our number for the volume.
(0.0054 g/mm³) x (10 mm / cm)³
= (0.0054 x 1,000) g/cm³
= 5.37 g/cm³ .
This isn't actually very close to what the US mint says for the density
of a penny, but it's in a much better ball park than 0.0054 was.
Answer:
The magnetic field strength inside the solenoid is
.
Explanation:
Given that,
Radius = 2.0 mm
Length = 5.0 cm
Current = 2.0 A
Number of turns = 100
(a). We need to calculate the magnetic field strength inside the solenoid
Using formula of the magnetic field strength
Using Ampere's Law

Where, N = Number of turns
I = current
l = length
Put the value into the formula


(b). We draw the diagram
Hence, The magnetic field strength inside the solenoid is
.
Explanation:
I'm not sure to be honest lol
Answer:
Speed = 0.00392 m/s
Explanation:
Solution:
Frequency of the radio = 85 MHz
If we have the frequency, we can calculate the wavelength of the radio wave.
As we know,
Frequency = speed of light/wavelength
wavelength = c/f
c = speed of light = 3 x
m/s
So,
Wavelength = 3 x
m/s / 85 x
Hz
Wavelength = 3.5294 m
Man gets disturbed reception at t = 15 min
t = 15 x 60 = 900 s
t = 900 s
Speed = distance/time
Here, distance is wavelength. So,
Speed = 3.5294 m / 900 s
Speed = 0.00392 m/s
Hence, the man's car is going with speed of 0.00392 m/s