Answer:
Initial velocity describes how fast an object travels when gravity first applies force on the object. On the other hand, the final velocity is a vector quantity that measures the speed and direction of a moving body after it has reached its maximum acceleration.
Explanation:
The conservation of the mass of fluid through two sections (be they A1 and A2) of a conduit (pipe) or current tube establishes that the mass that enters is equal to the mass that exits. Mathematically the input flow must be the same as the output flow,
The definition of flow is given by
Where
V = Velocity
A = Area
The units of the flow of flow are cubic meters per second, that is to say that if there is a continuity, the volume of input must be the same as that of output, what changes if the sections are modified are the proportions of speed.
In this way
consider the motion in x-direction
= initial velocity in x-direction = ?
X = horizontal distance traveled = 100 m
= acceleration along x-direction = 0 m/s²
t = time of travel = 4.60 sec
Using the equation
X = t + (0.5) t²
100 = (4.60)
= 21.7 m/s
consider the motion along y-direction
= initial velocity in y-direction = ?
Y = vertical displacement = 0 m
= acceleration along x-direction = - 9.8 m/s²
t = time of travel = 4.60 sec
Using the equation
Y = t + (0.5) t²
0 = (4.60) + (0.5) (- 9.8) (4.60)²
= 22.54 m/s
initial velocity is given as
= sqrt(()² + ()²)
= sqrt((21.7)² + (22.54)²) = 31.3 m/s
direction: θ = tan⁻¹(22.54/21.7) = 46.12 deg