False
Just took this test
I'm almost positive the answer is a.
Answer:
(a) The self inductance, L = 21.95 mH
(b) The energy stored, E = 4.84 J
(c) the time, t = 0.154 s
Explanation:
(a) Self inductance is calculated as;
![L = \frac{N^2 \mu_0 A}{l}](https://tex.z-dn.net/?f=L%20%3D%20%5Cfrac%7BN%5E2%20%5Cmu_0%20A%7D%7Bl%7D)
where;
N is the number of turns = 1000 loops
μ is the permeability of free space = 4π x 10⁻⁷ H/m
l is the length of the inductor, = 45 cm = 0.45 m
A is the area of the inductor (given diameter = 10 cm = 0.1 m)
![L = \frac{(1000)^2 \times (4\pi \times 10^{-7}) \times (0.00786)}{0.45} \\\\L = 0.02195 \ H\\\\L = 21.95 \ mH](https://tex.z-dn.net/?f=L%20%3D%20%5Cfrac%7B%281000%29%5E2%20%5Ctimes%20%284%5Cpi%20%5Ctimes%2010%5E%7B-7%7D%29%20%5Ctimes%20%280.00786%29%7D%7B0.45%7D%20%5C%5C%5C%5CL%20%3D%200.02195%20%5C%20H%5C%5C%5C%5CL%20%3D%2021.95%20%5C%20mH)
(b) The energy stored in the inductor when 21 A current ;
![E = \frac{1}{2}LI^2\\\\E = \frac{1}{2} \times (0.02195) \times (21) ^2\\\\E = 4.84 \ J](https://tex.z-dn.net/?f=E%20%3D%20%5Cfrac%7B1%7D%7B2%7DLI%5E2%5C%5C%5C%5CE%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5Ctimes%20%280.02195%29%20%5Ctimes%20%2821%29%20%5E2%5C%5C%5C%5CE%20%3D%204.84%20%5C%20J)
(c) time it can be turned off if the induced emf cannot exceed 3.0 V;
![emf = L \frac{\Delta I}{\Delta t} \\\\t = \frac{LI}{emf} \\\\t = \frac{0.02195 \times 21}{3} \\\\t = 0.154 \ s](https://tex.z-dn.net/?f=emf%20%3D%20L%20%5Cfrac%7B%5CDelta%20I%7D%7B%5CDelta%20t%7D%20%5C%5C%5C%5Ct%20%3D%20%5Cfrac%7BLI%7D%7Bemf%7D%20%5C%5C%5C%5Ct%20%3D%20%5Cfrac%7B0.02195%20%5Ctimes%2021%7D%7B3%7D%20%5C%5C%5C%5Ct%20%3D%200.154%20%5C%20s)
Answer:0.502kg
Explanation:
F4om the relation
Power x time = mass x latent heat of vapourization
P.t=ML
1260 * 15 *60 = M * 22.6 * 10^5
M= 1134000/(22.6 *10^5)
M=0.502kg=502g
Answer:
2.7s
Explanation:
The solution of time required is shown below:-
In the RC circuit condenser charge 63 percent of the full charge from initial time to constant time
Now, the
63% that is equal to 0.63 which is full equilibrium charge
Therefore, the time required to maintain will be Equal to time (t) constant that is 2.7s
So, the correct answer is 2.7s