Answer:
option (3)
Explanation:
According to the ideal gas equation
PV = nRT
where, P is pressure, V is volume, R is gas constant and T be the absolute temperature.
At constant volume,
P ∝ T
If the temperature is doubled, the pressure also doubled.
As volume is constant, so the density is also constant.
So, the pressure is doubled and the density remain constant.
Answer:
B = 8.0487mT
Explanation:
To solve the exercise it is necessary to take into account the considerations of the Magnetic Force described by Faraday,
The magnetic force is given by the formula

Where,
B = Magnetic Field
I = Current
L = Length
Angle between the magnetic field and the velocity, for this case are perpendicular, then is 90 degrees
According to our data we have that
I = 16.4A
F = 0.132N/m
As we know our equation must be modificated to Force per length unit, that is

Replacing the values we have that

Solving for B,


Answer:
The methane gives Neptune the same blue color as Uranus.
Explanation:
Answer:
The electric field inside the wire will remain the same or constant, while the drift velocity will by a factor of four.
Explanation:
Electron mobility, μ =
where
= Drift velocity
E = Electric field
Given that the electric field strength = 1.48 V/m,
Therefore since the electric potential depends on the length of the wire and the attached potential difference, then when the electron mobility is increased 4 times the Electric field E will be the same but the drift velocity will increase four times. That is
4·μ = 