Answer:
the temperature of the star
Explanation:
The color of stars usually indicates the temperature of the star.
A star that is relatively cold usually shows a typical red color.
The hottest stars have a blue color.
- These star colors have been used by astronomers to determine their temperature.
- A broad spectrum between blue, the hottest color, and red the coldest is used.
- Class O stars are usually the blue colored ones
- Class M is the coldest with red color
Answer:5
Explanation:The pnictogen group, or nitrogen group, is located in column 15 of the periodic table. This family consists of the elements nitrogen, phosphorus, arsenic, antimony, bismuth, and ununpentium (N, P, As, Sb, Bi, and Uup, respectively). Each member of this family contains five valence electrons.
26 because you need to do 54-28=26
The atomic mass number is the number of protons AND neutrons together.
Answer:
The correct answer is B. Since the two metals have the same mass, but the specific heat capacity of iron is much greater than that of gold, the final temperature of the two metals will be closer to 498 K than to 298 K
Explanation:
Iron is hotter and gold is colder, therefore, according to laws of thermodynamics, iron will lose heat to gold until they are at the same temperature.
The specific heat capacity of iron(0.449) is over three times that of gold(0.128). Since masses are equal, this means that each time iron's temperature drops by one degree, the energy released it releases makes gold's temperature increase by more than 3 degrees. So gold's temperature will be climbing much faster than iron's is falling. Meaning they will meet closer to the initial temperature of iron than that of gold
The amount of energy released is calculated by the product of heat of fusion and mass.
The formula of amount energy released is given by:
(1)
Here,
q is amount of energy released
L is heat of fusion (
)
m is mass of water
Put all the given values in equation (1)

≅ 

Thus, amount of energy released is 