Answer:
They both go backward because of force.
Explanation:
The logic behind this answer is that child right and pushes away causing her to go backward meaning her partner is being pushed backwards to.
(Hope this was helpful!)
Answer:
13.5 g
Explanation:
This question is solved easily if we remember that the number of moles is obtained by dividing the mass into the atomic weight or molar mass depending if we are referring to elements or molecules.
Therefore, the mass of aluminum in the reaction will the 0.050 mol Al times the atomic weight of aluminum.
number of moles = n = mass of Al / Atomic Weight Al
⇒ mass Al = n x Atomic Weight Al = 0.050 mol x 27 g mol⁻¹
= 13.5 g
We have three significant figures in 0.050 and therefore we should have three significant figures in our answer.
answer:
atomic number
the same chemical element is characterized by the number of protons in the nucleus that determines the total positive charge.
Answer:
fundamental frequency in helium = 729.8 Hz
Explanation:
Fundamental frequency of an ope tube/pipe = v/2L
where v is velocity of sound in air = 340 m/s; λ is wave length of wave = 2L ; L is length of the pipe
To find the length of the pipe,
frequency = velocity of sound / 2L
272 = 340 / 2 L
L = 0.625 m
If the pipe is filled with helium at the same temperature, the velocity of sound will change as well as the frequency of note produced since velocity is directly proportional to frequency of sound.
Also, the velocity of sound is inversely proportional to square root of molar mass of gas; v ∝ 1/√m
v₁/v₂ = √m₂/m₁
v₁ = velocity of sound in air, v₂ = velocity of sound in helium, m₁ = molar mass of air, m₂ = molar mass of helium
340 / v = √4 / 28.8
v₂ = 340 / 0. 3727
v₂ = 912.26 m /s
fundamental frequency in helium = v₂ / 2L
fundamental frequency in helium = 912.26 / (2 x 0.625)
fundamental frequency in helium = 729.8 Hz