<span>As long as both mirrors are set at 45% and the same size then you see the same as is reflected in the upper mirror </span>
<span>Put a lens in the middle of the tube </span>
<span>? </span>
<span>We use mirrors when we drive cars ect </span>
<span>Normally they are set across from a concealed entrance or one that is hard to see both ways like the inside of a hairpin bend. Sometimes only to help in one direction. </span>
<span>Sonar which is sound waves that are sent out at a set rate then reflected by objects. The longer the gap between the two the further away it is, They still use periscopes to target boats though. </span>
<span>The periscope can only reflect what is outside so if you could see it because there is enough light then Yes. If you could not see it because it is dark then No unless you get into Info-Red light or Image Intensifying systems as well </span>
Answer:
λ = 162 10⁻⁷ m
Explanation:
Bohr's model for the hydrogen atom gives energy by the equation
= - k²e² / 2m (1 / n²)
Where k is the Coulomb constant, e and m the charge and mass of the electron respectively and n is an integer
The Planck equation
E = h f
The speed of light is
c = λ f
E = h c /λ
For a transition between two states we have
-
= - k²e² / 2m (1 /
² -1 /
²)
h c / λ = -k² e² / 2m (1 /
² - 1/
²)
1 / λ = (- k² e² / 2m h c) (1 /
² - 1/
²)
The Rydberg constant with a value of 1,097 107 m-1 is the result of the constant in parentheses
Let's calculate the emission of the transition
1 /λ = 1.097 10⁷ (1/10² - 1/8²)
1 / λ = 1.097 10⁷ (0.01 - 0.015625)
1 /λ = 0.006170625 10⁷
λ = 162 10⁻⁷ m
Answer:

Explanation:
In series combination, the equivalent resistance is given by :

Let the identical resistors be R. We have, 
So,

So, the resistance of each resistor is
.