Answer:
The answer to your question is V₁ = 12.5 ml
Explanation:
Data
Volume = V₁?
[NaOH] = C₁ = 4.0 M
Volume 2 = V₂ = 100 ml
[NaOH] = C₂ = 0.5 M
Formula of dilution
V₁C₁ = V₂C₂
Solve for V₁ (original solution)
V₁ = 
Substitution
V₁ = 
Simplification
V₁ = 
Result
V₁ = 12.5 ml
The number of dots represents the amount of valence electrons, which is the same as the last digit of the elements group number in ptof.
Answer:
The correct answer is option A.
Explanation:
Initial volume of the gas =
Final volume of the gas = 
Initial pressure of the gas =
Final volume of the gas = 
Using Boyle's law:



Hence,the correct answer is option A.
Answer:
5.25g
Explanation:
We'll begin by writing the balanced equation for the reaction. This is shown below:
Na2SiO3 + 8HF → H2SiF6 + 2NaF + 3H2O
From the balanced equation above,
8 moles of HF reacted to produce 2 moles of NaF.
Therefore, 0.5 moles of HF will react to produce = (0.5 x 2)/8 = 0.125 mole of NaF.
Next, we shall convert 0.125 mole of NaF to grams.
This is illustrated below:
Mole of NaF = 0.125 mole
Molar mass of NaF = 23 + 19 = 42g/mol
Mass of NaF =..?
Mass = mole x molar mass
Mass of NaF = 0.125 x 42
Mass of NaF = 5.25g
Therefore, 5.25g of NaF is produced from the reaction.
Answer:
The answer to your question is 88.7 ml
Explanation:
Data
Volume = ?
Concentration of NaOH = 0.142 M
Volume of H₂C₄H₄O₆ = 21.4 ml
Concentration of H₂C₄H₄O₆ = 0.294 M
Balanced chemical reaction
2 NaOH + H₂C₄H₄O₆ ⇒ Na₂C₄H₄O₆ + 2H₂O
1.- Calculate the moles of H₂C₄H₄O₆
Molarity = moles/volume
Solve for moles
moles = Molarity x volume
Substitution
moles = 0.294 x 21.4/1000
Result
moles = 0.0063
2.- Use proportions to calculate the moles of NaOH
2 moles of NaOH ------------------ 1 moles of H₂C₄H₄O₆
x ------------------ 0.0063 moles
x = (0.0063 x 2) / 1
x = 0.0126 moles of NaOH
3.- Calculate the volume of NaOH
Molarity = moles / volume
Solve for volume
Volume = moles/Molarity
Substitution
Volume = 0.0126/0.142
Result
Volume = 0.088 L or 88.7 ml