Answer:
The separation distance between the parallel planes of an atom is hc/2sinθ(EK - EL)
Explanation:
The relationship between energy and wavelength is expressed below:
E = hc/λ
λ = hc/EK - EL
Considering the condition of Bragg's law:
2dsinθ = mλ
For the first order Bragg's law of reflection:
2dsinθ = (1)λ
2dsinθ = hc/EK - EL
d = hc/2sinθ(EK - EL)
Where 'd' is the separation distance between the parallel planes of an atom, 'h' is the Planck's constant, 'c' is the velocity of light, θ is the angle of reflection, 'EK' is the energy of the K shell and 'EL' is the energy of the K shell.
Therefore, the separation distance between the parallel planes of an atom is hc/2sinθ(EK - EL)
Rutherford's model of the atom (ESAAQ) Rutherford carried out some experiments which led to a change in ideas around the atom. His new model described the atom as a tiny, dense, positively charged core called a nucleus surrounded by lighter, negatively charged electrons.
Recall that

where
and
are the initial and final velocities, respecitvely;
is the acceleration; and
is the change in position.
So we have


(Normally, this equation has two solutions, but we omit the negative one because the car is moving in one direction.)
Answer:
thermal energy
Explanation:
heat transfers into it causing it to physically change
Answer:
v= 449.8 m/s
Explanation:
Given data
Frequency= 346Hz
Wave length= 1.4m
The expression below is used to find the speed

substitute

Hence the speed is v= 449.8 m/s