Answer:
q = 3.6 10⁵ C
Explanation:
To solve this exercise, let's use one of the consequences of Gauss's law, that all the charge on a body can be considered at its center, therefore we calculate the electric field on the surface of a sphere with the radius of the Earth
r = 6 , 37 106 m
E = k q / r²
q = E r² / k
q =
q = 4.5 10⁵ C
Now let's calculate the charge on the planet with E = 222 N / c and radius
r = 0.6 r_ Earth
r = 0.6 6.37 10⁶ = 3.822 10⁶ m
E = k q / r²
q = E r² / k
q =
q = 3.6 10⁵ C
More mass and less difference
Yes. It r<span>efers to any of the temperatures assigned to a number of reproducible equilibrium states on the International Practical Temperature Scale</span><span>
In short, Your Answer would be "True"
Hope this helps!</span>
Answer:
<h2>
a) Q = 0.759µC</h2><h2>
b) E = 39.5µJ</h2>
Explanation:
a) The charge Q on the positive charge capacitor can be gotten using the formula Q = CV
C = capacitance of the capacitor (in Farads )
V = voltage (in volts) = 100V
C = ∈A/d
∈ = permittivity of free space = 8.85 × 10^-12 F/m
A = cross sectional area = 600 cm²
d= distance between the plates = 0.7cm
C = 8.85 × 10^-12 * 600/0.7
C = 7.59*10^-9Farads
Q = 7.59*10^-9 * 100
Q = 7.59*10^-7Coulombs
Q = 0.759*10^-6C
Q = 0.759µC
b) Energy stored in a capacitor is expressed as E = 1/2CV²
E = 1/2 * 7.59*10^-9 * 100²
E = 0.0000395Joules
E = 39.5*10^-6Joules
E = 39.5µJ