Answer: Speed = 4m/s
Strength = 7.1T
Explanation: P= 4.0w
N = 1.0
V= ?
Power = force x velocity
Velocity = power/ force
V= 4.0w/1.0N
V = 4m/s
Strength of the magnetic field
B = √PR / lv
Where; l = length 10cm
R= 2.0
P= 4.0w
V= 4m/s
B = √ (4.0w) × (2.0) / (10cm) × (4m/s)
B = 7.1T
Answer:
Mass of the pull is 77 kg
Explanation:
Here we have for
Since the rope moves along with pulley, we have
For the first block we have
T₁ - m₁g = -m₁a = -m₁g/4
T₁ = 3/4(m₁g) = 323.4 N
Similarly, as the acceleration of the second block is the same as the first block but in opposite direction, we have
T₂ - m₂g = m₂a = m₂g/4
T₂ = 5/4(m₂g) = 134.75 N
T₂r - T₁r = I·∝ = 0.5·M·r²(-α/r)
∴ 

Mass of the pull = 77 kg.
The three main parts of an atom are protons, neutrons<span>, and </span>electrons<span>. </span>Protons<span> - have a positive charge, located in the </span>nucleus<span>, </span>Protons<span> and </span>neutrons<span> have nearly the same mass while </span>electrons<span> are much less massive. </span>Neutrons<span>- Have a negative charge, located in the </span><span>nucleus</span>
Complete Question
The complete question is shown on the first uploaded image
Answer:
The work done by the spring is = 
Explanation:
Force = torque × length
Given
F = 9.13 N
length (L) = 5.91 cm = 0.0591 m [Note 1 m = 100 cm ]
considering the formula above
where k denotes torque

Energy Stored 

I hope this can help you ask me if you need help again