Answer ; The correct answer is : 346 m/s .
Sound is a type of longitudinal wave , which is produced when a matter compress or refracts .
Speed of sounds depends on factors like medium , density , temperature etc .
Effect of Temperature on speed of sounds :
When the temperature increases , molecules gains energy and they starts vibrating and with higher temperature vibration becomes fast . So the waves of sounds can travel faster due to faster vibrations . Hence , speed of sounds is directly proportional to the temperature or speed of sounds increases with increase in temperature .
The speed of sounds at 0⁰C is 331 
The relation between speed of sound and temperature is given as :

Given : Temperature = 25 ⁰ C
Plugging values in formula =>



Explanation:
The given data is as follows.
Pressure (P) = 760 torr = 1 atm
Volume (V) =
= 0.720 L
Temperature (T) =
= (25 + 273) K = 298 K
Using ideal gas equation, we will calculate the number of moles as follows.
PV = nRT
Total atoms present (n) =
=
= 0.0294 mol
Let us assume that there are x mol of Ar and y mol of Xe.
Hence, total number of moles will be as follows.
x + y = 0.0294
Also, 40x + 131y = 2.966
x = 0.0097 mol
y = (0.0294 - 0.0097)
= 0.0197 mol
Therefore, mole fraction will be calculated as follows.
Mol fraction of Xe =
= 
= 0.67
Therefore, the mole fraction of Xe is 0.67.
Organic is safer inorganic is the same but less better
Answer:
After 2.0 minutes the concentration of N2O is 0.3325 M
Explanation:
Step 1: Data given
rate = k[N2O]
initial concentration of N2O of 0.50 M
k = 3.4 * 10^-3/s
Step 2: The balanced equation
2N2O(g) → 2 N2(g) + O2(g)
Step 3: Calculate the concentration of N2O after 2.0 minutes
We use the rate law to derive a time dependent equation.
-d[N2O]/dt = k[N2O]
ln[N2O] = -kt + ln[N2O]i
⇒ with k = 3.4 *10^-3 /s
⇒ with t = 2.0 minutes = 120s
⇒ with [N2O]i = initial conc of N2O = 0.50 M
ln[N2O] = -(3.4*10^-3/s)*(120s) + ln(0.5)
ln[N2O] = -1.101
e^(ln[N2O]) = e^(-1.1011)
[N2O} = 0.3325 M
After 2.0 minutes the concentration of N2O is 0.3325 M
The reaction is an exothermic one because heat is released to the surroundings. An exothermic reaction is a chemical reaction where energy is being released as the reaction by light or heat. On the other hand, endothermic reaction needs energy input for the reaction to proceed.