1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sdas [7]
3 years ago
9

4. Two particles, A and B, are in uniform circular motion about a common center. The acceleration of particle A is 7.3 times tha

t of particle B. The period of particle B is 2.5 times the period of particle A. The ratio of the radius of the motion of particle A to that of particle B is closest to
Physics
2 answers:
HACTEHA [7]3 years ago
3 0

Answer:

Explanation:

Acceleration of particle A is 7.3 times the acceleration of particle B.

Let the acceleration of particle B is a, then the acceleration of particle A is

7.3 a.

Let the period of particle A is T and the period of particle B is 2.5 T.

Let the radius of particle A is RA and the radius of particle B is RB.

Use the formula for the centripetal force

a=r\omega ^{2}=r\times \frac{4\pi^{2}}{T^{2}}

So, r = a\frac{T^{2}}{4\pi^{2}}

The ratio of radius of A to the radius of B is given by

\frac{R_{A}}{R_{B}}=\frac{a_{A}\times T_{A}^{2}}{a_{B}\times T_{B}^{2}}

\frac{R_{A}}{R_{B}}=\frac{7.3 a\times T^{2}}{a\times 6.25T^{2}}

RA : RB = 1.17

KiRa [710]3 years ago
3 0

Answer:

The ratio of he radius of the motion of particle A to that of particle B is closest to 1.16.

Explanation:

Let a_A,a_B\ and\ r_A,r_B are accelerations of particle and radius of A and B respectively. It is given that :

a_A=7.3\times a_B\\\\\dfrac{a_A}{a_B}=7.3\\\\and\\\\T_B=2.5\times T_A\\\dfrac{T_B}{T_A}=2.5

The centripetal acceleration is given by the formula as :

a=\dfrac{v^2}{r}

r is the radius of motion

Since, v=\dfrac{2\pi r}{T}

a=\dfrac{4\pi ^2r}{T^2}

For A

a_A=\dfrac{4\pi^2 r_A}{T^2_A}.........(1)

For B

a_B=\dfrac{4\pi^2 r_B}{T^2_B}...........(2)

Dividing equation (1) and (2) we get :

\dfrac{a_A}{a_B}=\dfrac{T^2_B\times r_A}{T^2_A\times r_B}

\dfrac{r_A}{r_B}=\dfrac{a_A\times T^2_A}{a_B\times T^2_B}

Now using given conditions :

\dfrac{r_A}{r_B}=\dfrac{7.3}{(2.5)^2}\\\\\dfrac{r_A}{r_B}=1.16

So, the ratio of he radius of the motion of particle A to that of particle B is closest to 1.16.

You might be interested in
Is adequate health care are available to all
tankabanditka [31]

Explanation:

I think for anyone to answer this we need more info on what you want answered. The Sentence Itself doesn't Make Since To Me

6 0
2 years ago
Assume that the Deschutes River has straight and parallel banks and that the current is 0.75 m/s. Drifting down the river, you f
DedPeter [7]

Answer:

    d = 142.5 m

Explanation:

This is a vector exercise. Let's calculate how much the boat travels in the 40s

     d₀ = v_{b} t

    d₀ = 0.75 40

    d₀ = 30 m

Let's write the kinematic equations

Boat

     x = d₀  +  v_{b} t

     x = 0 +  v_{h} t

At the meeting point the coordinate is the same for both

    d₀  +  v_{b} t =  v_{h} t

    t ( v_{h} -  v_{b}) = d₀  

    t = d₀  / ( v_{b}-  v_{h})

The two go in the same direction therefore the speeds have the same sign

     t = 30 / (0.95-0.775)

     t = 150 s

The distance traveled by man is

     d =  v_{h} t

     d = 0.95 150

     d = 142.5 m

3 0
4 years ago
A 5.20 kg chunk of ice is sliding at 13.5 m/s on the floor of an ice-covered valley when it collides with and sticks to another
Stella [2.4K]

Answer:

The chunk went as high as

2.32m above the valley floor

Explanation:

This type of collision between both ice is an example of inelastic collision, kinetic energy is conserved after the ice stuck together.

Applying the principle of energy conservation for the two ice we have based on the scenery

Momentum before impact = momentum after impact

M1U1+M2U2=(M1+M2)V

Given data

Mass of ice 1 M1= 5.20kg

Mass of ice 2 M2= 5.20kg

velocity of ice 1 before impact U1= 13.5 m/s

velocity of ice 2 before impact U2= 0m/s

Velocity of both ice after impact V=?

Inputting our data into the energy conservation formula to solve for V

5.2*13.5+5.2*0=(10.4)V

70.2+0=10.4V

V=70.2/10.4

V=6.75m/s

Therefore the common velocity of both ice is 6.75m/s

Now after impact the chunk slide up a hill to solve for the height it climbs

Let us use the equation of motion

v²=u²-2gh

The negative sign indicates that the chunk moved against gravity

And assuming g=9.81m/s

Initial velocity of the chunk u=0m/s

Substituting we have

6.75²= 0²-2*9.81*h

45.56=19.62h

h=45.56/19.62

h=2.32m

5 0
3 years ago
A horizontal 745 N merry-go-round of radius
Arturiano [62]

Answer:

The kinetic energy of the merry-goround after 3.62 s is  544J

Explanation:

Given :

Weight w = 745 N

Radius r =  1.45 m

Force =  56.3 N

To Find:

The kinetic energy of the merry-go round after 3.62  = ?

Solution:

Step 1:  Finding the Mass of merry-go-round

m = \frac{ weight}{g}

m = \frac{745}{9.81 }

m = 76.02 kg

Step 2: Finding the Moment of Inertia of solid cylinder

Moment of Inertia of solid cylinder I =0.5 \times m \times r^2

Substituting the values

Moment of Inertia of solid cylinder I  

=>0.5 \times 76.02 \times (1.45)^2

=> 0.5 \times 76.02\times 2.1025

=> 79.91 kg.m^2

Step 3: Finding the Torque applied T

Torque applied T = F \times r

Substituting the values

T = 56.3  \times 1.45

T = 81.635 N.m

 Step 4: Finding the Angular acceleration

Angular acceleration ,\alpha  = \frac{Torque}{Inertia}

Substituting the values,

\alpha  = \frac{81.635}{79.91}

\alpha = 1.021 rad/s^2

 Step 4: Finding the Final angular velocity

Final angular velocity ,\omega = \alpha \times  t

Substituting the values,

\omega = 1.021 \times  3.62

\omega = 3.69 rad/s

Now KE (100% rotational) after 3.62s is:

KE = 0.5 \times I \times \omega^2

KE =0.5 \times 79.91 \times 3.69^2

KE = 544J

6 0
4 years ago
A cart for hauling ore out of a gold mine has a mass of 435 kg, including its load. the cart runs along a straight stretch of tr
marta [7]
What are the answer choices 

4 0
3 years ago
Other questions:
  • Roberto makes a graphic organizer to compare fusion nuclear reactions and fission nuclear reactions. A venn diagram with 2 inter
    12·2 answers
  • What two forces are there when you skydive
    6·2 answers
  • a 45 kg ice skater initially skating at a velocity of 3 m/s speeds up to a velocity of 5 m/s. calculate the difference in the ma
    14·2 answers
  • What will sunshine help produce in the body?
    7·1 answer
  • A hot air balloon is traveling vertically upward at a constant speed of 4.5 m/s. When it is 28 m above the ground, a package is
    8·1 answer
  • The amount of energy necessary to remove an electron from an atom is a quantity called the ionization energy, Ei. This energy ca
    5·1 answer
  • - Which of the following does not move as a transverse wave?
    13·1 answer
  • What is the momentum of an object in splace
    9·1 answer
  • From a penalty kick, the ball rebounds off the goalkeeper back to the player who took the kick. That player then kicks the ball
    13·1 answer
  • Help me please…………….
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!