Answer:
When current flows through the motor, the electromagnet rotates, causing a shaft to rotate as well. The rotating shaft moves other parts of the device.
Explanation:
An electric motor is a device that uses an electromagnet to change electrical energy to kinetic energy.
Side note:
Hope this helps!
Please give Brainliest!
Answer:
time taken by the wave to reach the person is 0.2 s
Explanation:
As we know that the speed of the wave is given as

here we know that the wavelength of the wave is


now speed of the wave is given as


Now time taken by the wave to reach 5 m distance is



(a) 5.66 m/s
The flow rate of the water in the pipe is given by

where
Q is the flow rate
A is the cross-sectional area of the pipe
v is the speed of the water
Here we have

the radius of the pipe is
r = 0.260 m
So the cross-sectional area is

So we can re-arrange the equation to find the speed of the water:

(b) 0.326 m
The flow rate along the pipe is conserved, so we can write:

where we have

and where
is the cross-sectional area of the pipe at the second point.
Solving for A2,

And finally we can find the radius of the pipe at that point:

Answer:
Potential difference and charge will also increase.
Explanation:
Asking that :
What will happen to the charge and potential difference if the plate area were increased while the plate separation remains unchanged?
The charge is directly proportional to area of the plate. That is, increase in area of the plate of a capacitor will lead to the increase in the charges between the plates.
And since charge is also proportional to the magnitude of potential difference between the plates from the definition of capacitance of a capacitor which says that:
Q = CV
Therefore, increase in the area of the plate will also lead to increase in potential difference between the plates.
Therefore, if the plate area were increased while the plate separation remains unchanged, the charge and potential difference between them will also increase.
“As temperatures drop, the pavement contracts, building up tensile stresses that lead to cracking,” states MnDOT's Research Services Section. “Fractures occur every 20 to 30 feet across the lane, allowing water to penetrate the structure, which further weakens the pavement layer and the base beneath