In kynematics you describe the motion of particles using vectors and their change in time. You define a position vector r for a particle, and then define velocity v and acceleration a as


In dynamics Newton's laws predict the acceleration for a given force. Knowing the acceleration, and the kynematical relations defines above, you can solve for the position as a function of time: r(t)
The answer to your question is metaphase
By applying Newton's second law of motion;
ma = mg - T
Where,
m = mass; a = downward accelerations (+ve value) or upward acceleration (-ve value); g = gravitational acceleration; T = tension.
For the current case, the velocity is constant therefore,
a = 0
Then,
0 = mg - T
T = mg = 115*9.81 = 1128.15 N
Tension in the cable is 1128.15 N.
Answer:
A helium filled balloon floats forwards in a accelerating car because of the pressure difference between the front and the back of the car. When the car is accelerating, the air moves relitive to the car and the consequence is that the pressure in the back is slightly higher than in the front; which results in net force in forward direction.
hit that heart please leave brainliest and let me know if want me to answer or explain it in a different way :)
94.5 million miles.
I hope this helps, please Brainliest me, and have a great night! :D