1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
defon
3 years ago
7

Which of the following statements accurately describes the properties gases

Physics
2 answers:
Gwar [14]3 years ago
8 0

It may be, A change in the pressure of a gas results in a more significant change in volume than would occur in a liquid. I’m not for sure because I’m still studying this, but I think I correct but correct me if I’m wrong so that I can know and figure out what is the correct answer. Thank you

lana [24]3 years ago
5 0

2 they are easy to compress,

2 they expand to fill their containers,

3 they occupy far more space than the liquids or solids from which they form.

hope this helped!

You might be interested in
Basketball player Darrell Griffith is on record as
Gre4nikov [31]

Explanation:

1.

We use the equation

h = \frac{gt^2}{2}, where

h is the height traveled,

g is the acceleration due to gravity and

t is the time taken to reach height h.

We can now calculate t to be

\sqrt{\frac{2*1.2 m}{9.81 m/s^2} }

= 0.495 s

Let v be the initial velocity of the player.

The player deaccelarates from v m/s to 0 m/s in 0.495 s at the rate of 9.81 m/s^2.

v = 9.81 m/s^2 x 0.495 s = 4.85 m/s

2.

The player takes 0.3 s to increase his velocity from 0 m/s to 4.85 m/s. So his average accelaration is

4.85 m/s / 0.3 s = 16.2 m/s^2

5 0
3 years ago
How does work affect energy between objects so it can cause a change in the form of energy?
mihalych1998 [28]

Answer:

Doing work' is a way of transferring energy from one object to another, energy is transferred when a force moves through a distance.

Explanation:  So more energy, more work done bc u transferred more energy to move the object and doing the work. and if you only use a little of energy, the work done also only a little.

5 0
3 years ago
Read 2 more answers
true or false Both the large loose rocks and the small loose rocks used to be part of earth's solid rock layer
salantis [7]
Hello Micu212006 


Question: <span> Both the large loose rocks and the small loose rocks used to be part of earth's solid rock layer
</span><span>
Answer: True


Hope This Helps!
-Chris </span>
8 0
3 years ago
A physics teacher performing an outdoor demonstration suddenly falls from rest off a high cliff and simultaneously shouts "Help"
Digiron [165]

Answer: a) The cliff is 532.05m high

b) Her speed just before hitting the ground is 102.12 m/s

Explanation: To solve This, I'll use a sketch diagram, attached to this solution,

In 3seconds, the teacher heard the echo of her initial scream back. We can obtain the distance the teacher had fallen at the end of 3 seconds using the equations of motion,

Y1 = ut + 0.5g(t^2)

Since she's falling under the influence of gravity, her initial velocity, u = 0m/s, g = 9.8m/s2, t = 3s

Y1, distance she fell through in 3 seconds = 0.5×9.8(3^2) = 44.1m

Let the total height of the cliff be (44.1 + x); where is the remaining height of cliff that the teacher will fall through.

Using the equations of motion again, we can obtain distance travelled by the sound waves in 3s. sound waves travel with a constant speed of 340m/s, no acceleration,

Y2 = ut + 0.5g(t^2) where g = 0, u = 340m/s, t = 3seconds

Y2 = 340 × 3 = 1020m

But in 3 secs, the sound waves would have travelled through the total height of the cliff (44.1 + x) and back to the teacher's current height, x. That is, 1020 = 44.1 + x + x

x = 487.95m

So, total height of cliff = 44.1 + 487.95 = 532.05m

b) the speed of the teacher just before she hits the ground.

Using the equations of motion again,

(V^2) = (U^2) + 2gs

Where v is the final velocity to be calculated

U is the initial velocity = 0m/s

g is acceleration due to gravity = 9.8m/s2

S is the total height she fell through, that is, the height of the cliff = 532.05m

(V^2) = 0 + 2×9.8×532.05 = 10428.18

V = √(10428.18) = 102.12m/s

QED!

4 0
3 years ago
A 54 kg person stands on a uniform 20 kg, 4.1 m long ladder resting against a frictionless wall.
SVETLANKA909090 [29]

A) Force of the wall on the ladder: 186.3 N

B) Normal force of the ground on the ladder: 725.2 N

C) Minimum value of the coefficient of friction: 0.257

D) Minimum absolute value of the coefficient of friction: 0.332

Explanation:

a)

The free-body diagram of the problem is in attachment (please rotate the picture 90 degrees clockwise). We have the following forces:

W=mg: weight of the ladder, with m = 20 kg (mass) and g=9.8 m/s^2 (acceleration of gravity)

W_M=Mg: weight of the person, with M = 54 kg (mass)

N_1: normal reaction exerted by the wall on the ladder

N_2: normal reaction exerted by the floor on the ladder

F_f = \mu N_2: force of friction between the floor and the ladder, with \mu (coefficient of friction)

Also we have:

L = 4.1 m (length of the ladder)

d = 3.0 m (distance of the man from point A)

Taking the equilibrium of moments about point A:

W\frac{L}{2}sin 21^{\circ}+W_M dsin 21^{\circ} = N_1 Lsin 69^{\circ}

where

Wsin 21^{\circ} is the component of the weight of the ladder perpendicular to the ladder

W_M sin 21^{\circ} is the component of the weight of the man perpendicular to the ladder

N_1 sin 69^{\circ} is the component of the normal  force perpendicular to the ladder

And solving for N_1, we find the force exerted by the wall on the ladder:

N_1 = \frac{W}{2}\frac{sin 21^{\circ}}{sin 69^{\circ}}+W_M \frac{d}{L}\frac{sin 21^{\circ}}{sin 69^{\circ}}=\frac{mg}{2}\frac{sin 21^{\circ}}{sin 69^{\circ}}+Mg\frac{d}{L}\frac{sin 21^{\circ}}{sin 69^{\circ}}=\frac{(20)(9.8)}{2}\frac{sin 21^{\circ}}{sin 69^{\circ}}+(54)(9.8)\frac{3.0}{4.1}\frac{sin 21^{\circ}}{sin 69^{\circ}}=186.3 N

B)

Here we want to find the magnitude of the normal force of the ground on the ladder, therefore the magnitude of N_2.

We can do it by writing the equation of equilibrium of the forces along the vertical direction: in fact, since the ladder is in equilibrium the sum of all the forces acting in the vertical direction must be zero.

Therefore, we have:

\sum F_y = 0\\N_2 - W - W_M =0

And substituting and solving for N2, we find:

N_2 = W+W_M = mg+Mg=(20)(9.8)+(54)(9.8)=725.2 N

C)

Here we have to find the minimum value of the coefficient of friction so that the ladder does not slip.

The ladder does not slip if there is equilibrium in the horizontal direction also: that means, if the sum of the forces acting in the horizontal direction is zero.

Therefore, we can write:

\sum F_x = 0\\F_f - N_1 = 0

And re-writing the equation,

\mu N_2 -N_1 = 0\\\mu = \frac{N_1}{N_2}=\frac{186.3}{725.2}=0.257

So, the minimum value of the coefficient of friction is 0.257.

D)

Here we want to find the minimum coefficient of friction so the ladder does not slip for any location of the person on the ladder.

From part C), we saw that the coefficient of friction can be written as

\mu = \frac{N_1}{N_2}

This ratio is maximum when N1 is maximum. From part A), we see that the expression for N1 was

N_1 = \frac{W}{2}\frac{sin 21^{\circ}}{sin 69^{\circ}}+W_M \frac{d}{L}\frac{sin 21^{\circ}}{sin 69^{\circ}}

We see that this quantity is maximum when d is maximum, so when

d = L

Which corresponds to the case in which the man stands at point B, causing the maximum torque about point A. In this case, the value of N1 is:

N_1 = \frac{W}{2}\frac{sin 21^{\circ}}{sin 69^{\circ}}+W_M \frac{L}{L}\frac{sin 21^{\circ}}{sin 69^{\circ}}=\frac{sin 21^{\circ}}{sin 69^{\circ}}(\frac{W}{2}+W_M)

And substituting, we get

N_1=\frac{sin 21^{\circ}}{sin 69^{\circ}}(\frac{(20)(9.8)}{2}+(54)(9.8))=240.8 N

And therefore, the minimum coefficient of friction in order for the ladder not to slip is

\mu=\frac{N_1}{N_2}=\frac{240.8}{725.2}=0.332

Learn more about torques and equilibrium:

brainly.com/question/5352966

#LearnwithBrainly

7 0
3 years ago
Other questions:
  • Which number is not rounded correctly?
    9·2 answers
  • when an electric current is flowing through a wire which of the following is also produced energy domain field force
    12·1 answer
  • Which set of electromagnetic waves is in the correct order from greatest to least energy?
    11·1 answer
  • Which of these is a good conductor?<br> A. silver<br> B. rubber<br> C. paper<br> D. cotton
    13·1 answer
  • Cross-country power lines carry voltages of about A. 60 V. B. 120 V. C. 2200 V. D. 120,000 V.
    9·1 answer
  • As an object in motion becomes heavier, its kinetic energy _____. A. increases exponentially B. decreases exponentially C. incre
    13·2 answers
  • A runner starts slowing down as she gets tired. At 10 seconds, she 8m/a, and slows down to 2m/a at 13 seconds. What is her accel
    13·1 answer
  • What is the behavior that takes place when two waves of equal amplitude collide abd sum up to a bigger wave.
    6·1 answer
  • I need help wit this physics question.
    15·1 answer
  • Can someone please help, ty!!<br> (Will mark brainliest)
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!