Answer:
V₁ = 374.71 mL
Explanation:
Given data:
Initial volume of gas= ?
Initial temperature = 22°C
Final temperature = 86°C
Final volume = 456 mL
Solution:
Initial temperature = 22°C (22+273 = 295 k)
Final temperature = 86°C (86+273 = 359 k)
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
V₁ = V₂T₁ /T₂
V₁ = 456 mL × 295 K / 359 k
V₁ = 134520 mL.K / 359 k
V₁ = 374.71 mL
Answer:
dium (a liquid or a gas). This pattern of motion typically consists of random fluctuations in a particle's position inside a fluid sub-domain, followed by a relocation to another sub-domain. Each relocation is followed by more fluctuations within the new closed volume. This pattern describes a fluid at thermal equilibrium, defined by a given temperature. Within such a fluid, there exists no preferential direction of flow (as in transport phenomena). More specifically, the fluid's overall linear and angular momenta remain null over time. The kinetic energies of the molecular Brownian motions, together with those of molecular rotations and vibrations, sum up to the caloric component of a fluid's internal energy (the Equipartition theorem).
Explanation:
-Photons are absorbed by hot gas atoms
-Energy is transferred through large-scale movement of material
-Energy is released into the photosphere
Answer:
The bee's energy output can be calculated directly, and related to its size. it only needs enough air resistance to counter its weight and enough power in its wings to sustain this resistance. it bee like that.
Answer:
13.8 moles of water produced.
Explanation:
Given data:
Moles of KMnO₄ = 3.45 mol
Moles of water = ?
Solution:
Chemical equation:
16HCl + 2KMnO₄ → 2KCl + 2MnCl₂ + 5Cl₂ + 8H₂O
Moler ratio of water and KMnO₄:
KMnO₄ : H₂O
2 : 8
3.45 : 8/2×3.45 = 13.8 mol
Hence, 3.45 moles of KMnO₄ will produced 13.8 mol of water.