Answer:
Explanation:
For sound level in decibel scale the relation is
dB = 10 log I / I₀ where I₀ = 10⁻¹² and I is intensity of sound whose decibel scale is to be calculated .
Putting the given values
61 = 10 log I / 10⁻¹²
log I / 10⁻¹² = 6.1
I = 10⁻¹² x 10⁶°¹

intensity of sound of 5 persons


= 10log 5 x 10⁶°¹
= 10( 6.1 + log 5 )
= 67.98
sound level will be 67.98 dB .
Answer:
See below
Explanation:
Vertical position = 45 + 20 sin (30) t - 4.9 t^2
when it hits ground this = 0
0 = -4.9t^2 + 20 sin (30 ) t + 45
0 = -4.9t^2 + 10 t +45 = 0 solve for t =4.22 sec
max height is at t= - b/2a = 10/9.8 =1.02
use this value of 't' in the equation to calculate max height = 50.1 m
it has 4.22 - 1.02 to free fall = 3.2 seconds free fall
v = at = 9.81 * 3.2 = 31.39 m/s VERTICAL
it will <u>also</u> still have horizontal velocity = 20 cos 30 = 17.32 m/s
total velocity will be sqrt ( 31.39^2 + 17.32^2) = 35.85 m/s
Horizontal range = 20 cos 30 * t = 20 * cos 30 * 4.22 = 73.1 m
Answer:
true
Explanation:
because the roller coaster can't work without energy
The mass of this bag of cement in S.I. units (kg) is equal to 0.062 kilograms.
<u>Given the following data:</u>
- Mass of cement = 62 grams.
To calculate the mass of this bag of cement in S.I. units (kg):
<h3>How to convert to
S.I. units.</h3>
In Science, kilograms (kg) is the standard unit of measurement or S.I. units of the mass of a physical object. Thus, we would convert the value of the mass of this bag of cement in grams to kilograms (kg) as follows:
<u>Conversion:</u>
1000 grams = 1 kilograms.
62 grams = X kilograms.
Cross-multiplying, we have:
X = 
X = 0.062 kilograms.
Read more on mass here: brainly.com/question/13833323
Answer:
Approximately
, assuming that the volume of these two charged objects is negligible.
Explanation:
Assume that the dimensions of these two charged objects is much smaller than the distance between them. Hence, Coulomb's Law would give a good estimate of the electrostatic force between these two objects regardless of their exact shapes.
Let
and
denote the magnitude of two point charges (where the volume of both charged object is negligible.) In this question,
and
.
Let
denote the distance between these two point charges. In this question,
.
Let
denote the Coulomb constant. In standard units,
.
By Coulomb's Law, the magnitude of electrostatic force (electric force) between these two point charges would be:
.
Substitute in the values and evaluate:
.