1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
marta [7]
3 years ago
6

Hey any1 wanna be friends My name is Nataly ;)

Physics
2 answers:
Charra [1.4K]3 years ago
7 0

Answer:

suree fooshoo

Explanation:

allsm [11]3 years ago
3 0

Answer:

sure my name is asher

Explanation:

You might be interested in
What is the net force exerted on a 28.8 kg shopping cart that accelerates at a rate of 2.88 m/s^2?​
Mama L [17]

Answer:

<h2>82.94 N</h2>

Explanation:

The force acting on an object given it's mass and acceleration can be found by using the formula

force = mass × acceleration

From the question we have

force = 28.8 × 2.88 = 82.944

We have the final answer as

<h3>82.94 N</h3>

Hope this helps you

6 0
3 years ago
Which of the following is not the one of the influencing factors when it comes to body type
serg [7]
Where are the answer choice ?
3 0
2 years ago
Read 2 more answers
A particle initially located at the origin has an acceleration of vector a = 2.00ĵ m/s2 and an initial velocity of vector v i =
natali 33 [55]

With acceleration

\mathbf a=\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)\,\mathbf j

and initial velocity

\mathbf v(0)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i

the velocity at time <em>t</em> (b) is given by

\mathbf v(t)=\mathbf v(0)+\displaystyle\int_0^t\mathbf a\,\mathrm du

\mathbf v(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\displaystyle\int_0^t\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)\,\mathbf j\,\mathrm du

\mathbf v(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)u\,\mathbf j\bigg|_{u=0}^{u=t}

\mathbf v(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)t\,\mathbf j

We can get the position at time <em>t</em> (a) by integrating the velocity:

\mathbf x(t)=\mathbf x(0)+\displaystyle\int_0^t\mathbf v(u)\,\mathrm du

The particle starts at the origin, so \mathbf x(0)=\mathbf0.

\mathbf x(t)=\displaystyle\int_0^t\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)u\,\mathbf j\,\mathrm du

\mathbf x(t)=\left(\left(8.00\dfrac{\rm m}{\rm s}\right)u\,\mathbf i+\dfrac12\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)u^2\,\mathbf j\right)\bigg|_{u=0}^{u=t}

\mathbf x(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)t\,\mathbf i+\left(1.00\dfrac{\rm m}{\mathrm s^2}\right)t^2\,\mathbf j

Get the coordinates at <em>t</em> = 8.00 s by evaluating \mathbf x(t) at this time:

\mathbf x(8.00\,\mathrm s)=\left(8.00\dfrac{\rm m}{\rm s}\right)(8.00\,\mathrm s)\,\mathbf i+\left(1.00\dfrac{\rm m}{\mathrm s^2}\right)(8.00\,\mathrm s)^2\,\mathbf j

\mathbf x(8.00\,\mathrm s)=(64.0\,\mathrm m)\,\mathbf i+(64.0\,\mathrm m)\,\mathbf j

so the particle is located at (<em>x</em>, <em>y</em>) = (64.0, 64.0).

Get the speed at <em>t</em> = 8.00 s by evaluating \mathbf v(t) at the same time:

\mathbf v(8.00\,\mathrm s)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)(8.00\,\mathrm s)\,\mathbf j

\mathbf v(8.00\,\mathrm s)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(16.0\dfrac{\rm m}{\rm s}\right)\,\mathbf j

This is the <em>velocity</em> at <em>t</em> = 8.00 s. Get the <em>speed</em> by computing the magnitude of this vector:

\|\mathbf v(8.00\,\mathrm s)\|=\sqrt{\left(8.00\dfrac{\rm m}{\rm s}\right)^2+\left(16.0\dfrac{\rm m}{\rm s}\right)^2}=8\sqrt5\dfrac{\rm m}{\rm s}\approx17.9\dfrac{\rm m}{\rm s}

5 0
2 years ago
Forces are needed to make a car do which of these?
zalisa [80]
All of the above.

if your car is on a steep hill it needs force to stop moving and to speed up
8 0
2 years ago
(a) Consider the initial-value problem dA/dt = kA, A(0) = A0 as the model for the decay of a radioactive substance. Show that, i
murzikaleks [220]

Answer:

a) t = -\frac{ln(2)}{k}

b) See the proof below

A(t) = A_o 2^{-\frac{t}{T}}

c) t = 3T \frac{ln(2)}{ln(2)}= 3T

Explanation:

Part a

For this case we have the following differential equation:

\frac{dA}{dt}= kA

With the initial condition A(0) = A_o

We can rewrite the differential equation like this:

\frac{dA}{A} =k dt

And if we integrate both sides we got:

ln |A|= kt + c_1

Where c_1 is a constant. If we apply exponential for both sides we got:

A = e^{kt} e^c = C e^{kt}

Using the initial condition A(0) = A_o we got:

A_o = C

So then our solution for the differential equation is given by:

A(t) = A_o e^{kt}

For the half life we know that we need to find the value of t for where we have A(t) = \frac{1}{2} A_o if we use this condition we have:

\frac{1}{2} A_o = A_o e^{kt}

\frac{1}{2} = e^{kt}

Applying natural log we have this:

ln (\frac{1}{2}) = kt

And then the value of t would be:

t = \frac{ln (1/2)}{k}

And using the fact that ln(1/2) = -ln(2) we have this:

t = -\frac{ln(2)}{k}

Part b

For this case we need to show that the solution on part a can be written as:

A(t) = A_o 2^{-t/T}

For this case we have the following model:

A(t) = A_o e^{kt}

If we replace the value of k obtained from part a we got:

k = -\frac{ln(2)}{T}

A(t) = A_o e^{-\frac{ln(2)}{T} t}

And we can rewrite this expression like this:

A(t) = A_o e^{ln(2) (-\frac{t}{T})}

And we can cancel the exponential with the natural log and we have this:

A(t) = A_o 2^{-\frac{t}{T}}

Part c

For this case we want to find the value of t when we have remaining \frac{A_o}{8}

So we can use the following equation:

\frac{A_o}{8}= A_o 2^{-\frac{t}{T}}

Simplifying we got:

\frac{1}{8} = 2^{-\frac{t}{T}}

We can apply natural log on both sides and we got:

ln(\frac{1}{8}) = -\frac{t}{T} ln(2)

And if we solve for t we got:

t = T \frac{ln(8)}{ln(2)}

We can rewrite this expression like this:

t = T \frac{ln(2^3)}{ln(2)}

Using properties of natural logs we got:

t = 3T \frac{ln(2)}{ln(2)}= 3T

8 0
3 years ago
Other questions:
  • In the living room of your house you would like to run a 360 W stereo, a 30 W computer, a 720 W laser light projector, and four
    11·1 answer
  • Can someone please help me with this question thank you!
    5·1 answer
  • Amy wants to know whether or not an item will float when placed in a fluid. Which of the comparisons below, when true, will mean
    6·1 answer
  • Energy from the sun is _energy
    14·2 answers
  • A worker uses a cart to move a load of bricks weighing 680 N a distance of 10 m across a parking lot.
    14·2 answers
  • A 27.0 g marble sliding to the right at 56.8 cm/s overtakes and collides elastically with a 13.5 g marble moving in the same dir
    14·1 answer
  • On an essentially frictionless, horizontal ice rink, a skater moving at 3.0 m/s encounters a rough patch that reduces her speed
    5·1 answer
  • A student weighing 700 N climbs at constant speed to the top of an 8 m vertical rope in 10 s. The average power expended by the
    13·1 answer
  • Corn plants and milkweed plants grow in the same area. Over several years, the milkweed plants have taken over the field and the
    12·2 answers
  • The mass of a coin is measured to be 12.5±0.1 g. The diameter is 2.8±0.1 cm and the thickness 2.1 ±0.1 mm. Calculate the average
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!