Answer:
(a) 17,178 mg/m3
(b) 11,625 mg/m3
Explanation:
The concentration of CO in mg/m3 can be calculated as
For standard conditions (1 atm and 25°C), P/RT is 0.0409.
Concentration of 1.5% percent by volume of CO is equivalent to 1.5*10,000 ppm= 15,000 ppm CO.
The molecular weigth of CO is 28 g/mol.
(1) For 25°C and 1 atm conditions
(b) For 200°C and 1.1 atm,
Then the concentration in mg/m3 is
Mass of SiC = 2 g
<h3>Further explanation</h3>
Given
Reaction
SiO₂(s) + 3C(s) → SiC(s) + 2CO(g)
3.00 g of SiO₂
4.50 g of C
Required
mass of SiC
Solution
mol SiO₂ (MW=60,08 g/mol) :
= 3 g : 60.08 g/mol
= 0.0499
mol C(Ar = 12 g/mol) :
= 4.5 g : 12 g/mol
= 0.375
mol : coefficient of reactants =
SiO₂ : 0.0499/1 = 0.0499
C : 0.375/3 = 0.125
SiO₂ as a limiting reactant(smaller ratio)
Mol SiC based on mol SiO₂ = 0.0499
Mass SiC :
= mol x MW
= 0.0499 x 40,11 g/mol
= 2 g
Search up the answer on safari it will be easy
Answer:
Explanation:
Ya que las cargas eléctricas opuestas se atraen, las moléculas de agua tienden a atraerse unas a otras, haciendo el agua "pegajosa," como lo muestra el diagrama del lado derecho. Cuando las moléculas de agua se atraen unas a otras, se unen. Esta es la razón del porqué se forman las gotas
Answer:
See explanation
Explanation:
The structure of ethylene is shown in the image attached. The two carbon atoms have a double covalent bond between them.
The two carbon atoms are sp2 hybridized. The bond between them is a covalent bond, there is one pi bond and one sigma bond between the carbon atoms. Between carbon and hydrogen, there are covalent bonds also. The covalent bonds are sigma bonds.
The pi bonds between carbon atoms is weaker than the sigma bonds between the carbon atoms. This is because, the side-by-side overlap the p orbitals in a pi bond is less effective than the end-to-end overlap of a sigma bond.