1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mote1985 [20]
3 years ago
12

If you put your hands on someone and push, that is known as a

Physics
2 answers:
max2010maxim [7]3 years ago
8 0
Bullying sexually harassing rude and disgusting actions and disrespect
Strike441 [17]3 years ago
4 0

Answer:

that is known as an assault

You might be interested in
An object is thrown straight up with an initial velocity of 10 m/s, and there is an air resistance force causing an acceleration
lana [24]

Answer:

Vf= 7.29 m/s

Explanation:

Two force act on the object:

1) Gravity

2) Air resistance

Upward motion:

Initial velocity = Vi= 10 m/s

Final velocity = Vf= 0 m/s

Gravity acting downward =  g = -9.8 m/s²

Air resistance acting downward = a₁ = - 3 m/s²

Net acceleration = a = -(g + a₁ ) = - ( 9.8 + 3 ) = - 12.8 m/s²

( Acceleration is consider negative if it is in opposite direction of velocity )

Now

2as = Vf² - Vi²

⇒ 2 * (-12.8) *s = 0 - 10²

⇒-25.6 *s = -100

⇒ s = 100/ 25.6

⇒ s = 3.9 m

Downward motion:

Vi= 0 m/s

s = 3.9 m

Gravity acting downward =  g = 9.8 m/s²

Air resistance acting upward = a₁ = - 3 m/s²

Net acceleration = a = g - a₁  =  9.8 - 3  = 6.8 m/s²

Now

2as = Vf² - Vi²

⇒ 2 * 6.8 * 3.9 = Vf² - 0

⇒ Vf² = 53. 125

⇒ Vf= 7.29 m/s

8 0
4 years ago
A proton having an initial velvocity of 20.0i Mm/s enters a uniform magnetic field of magnitude 0.300 T with a direction perpend
Sonja [21]

The time interval for which the proton remains in the field is -

Δt = $\frac{\pi R}{40}.

We have a proton entering a uniform magnetic field which is in a direction perpendicular to the proton's velocity.

We have to determine time interval during which the proton is in the field.

<h3>What is the magnitude of force on the charged particle moving in a uniform magnetic field?</h3>

The magnitude of force on the charged particle moving in a uniform magnetic field is given by -

F = qvB sinθ



According to the question, we have -

Entering Velocity (v) = 20 i  m/s

Magnetic field intensity (B) = 0.3 T

Leaving velocity (u) = - 20 j  m/s

Now -

The entering and leaving velocity vectors have 90 degrees difference between them. Therefore, only a quarter of distance of the complete circular path of radius 'R' is traced by the proton. Therefore -

d = $\frac{2\pi r}{4} = $\frac{\pi R}{2}

Since, the radius of circular path is not given, we will assume it R.

Therefore, time for which proton remained in the field is -

t = $\frac{\pi R}{2v} = \frac{\pi R}{40}

Hence, the time interval for which the proton remains in the field is -

Δt = $\frac{\pi R}{40}

To solve more questions on Force on charged particle, visit the link below-

brainly.com/question/14597200

#SPJ4



 



6 0
2 years ago
How do climate differences affect the movement at the Mariana Trench
vovangra [49]
It pushes the currents to opposite sides
8 0
3 years ago
What formula is used to find an objects acceleration
ololo11 [35]
Acceleration = velocity / time.


7 0
3 years ago
To push a 26.0 kg crate up a frictionless incline, angled at 25.0° to the horizontal, a worker exerts a force of 209 N parallel
alukav5142 [94]

Answer:

(a) W = +397.1 J

(b) W = -204.6 J

(c) W = 0

(d) W= + 192.5 J

Explanation:

Work (W) is defined as the product of force (F) by the distance (d)the body travels due to this force. :

W= F*d Formula ( 1)

The forces that perform work on an object must be parallel to its displacement.

The forces perpendicular to the displacement of an object do not perform work on it.

The work is positive (W+) if the force has the same direction of movement of the object.  

The work is negative (W-) if the force has the opposite direction of the movement of the object.

Problem development

(a) Work performed by the worker's applied force on the box .

W= 209 N * 1.9 m = +397.1 J

(b) Work performed by the gravitational force on the crate

We calculate the weight component parallel to the displacement of the box:

We define the x-axis in the direction of the inclined plane ,25.0° to the horizontal.

We define the y-axis and in the direction of the plane perpendicular to the inclined plane.

W= m*g=26*9.8= 254.8N : total box weight

Wx= W*sen25.0°= 254.8*sen25.0°= 107.68 N

W = -Wx *d =107.68 N *1.9 m= -204.6 J

(c) Work performed by normal force (N) exerted by the incline on the crate

The force N is perpendicular to the displacement, then:

W=0

(d) Total work done on the crate

W = 397.1 J -204.6 J

W = 192.5 J

4 0
3 years ago
Other questions:
  • Which type of friction keeps a mound of rocks from falling away from each other
    6·2 answers
  • The wavelengths of light emitted by a firefly span the visible spectrum but have maximum intensity near 550 nm. A typical flash
    5·1 answer
  • What causes light to bend when it moves from one transparent medium to another?
    9·2 answers
  • Photoelectrons with a maximum speed of 7.00 · 105 m/s are ejected from a surface in the presence of light with a frequency of 8.
    11·1 answer
  • Could you help me with a science question really quick?
    13·1 answer
  • Airbags and safety belts can reduce injuries because they can
    9·1 answer
  • Ytuugtfghrddfghjiuyhhffdfvhj
    10·2 answers
  • When do we experience conservation of energy
    7·1 answer
  • Help mee pleaseee :)))
    6·1 answer
  • Which is the following is a modern method used to pressure food
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!