Answer:
So, the correct answer is 'Melatonin'.
Explanation:
thank me later
Answer:
D. 48.985 N
Explanation:
Newton's second law states that:

which means that the net force acting on an object is equal to the product between the object's mass and its acceleration.
The equation of the forces for the briefcase in the elevator therefore is given by:

where
N is the normal reaction exerted on the briefcase
(mg) is the weight of the briefcase, with
m = 4.5 kg being its mass
g = 9.8 m/s^2 is the acceleration of gravity
a = 1.10 m/s^2 is the acceleration
Here we chose upward as positive direction.
Solving for N, we find the normal force:

So the closest answer is
D. 48.985 N
Answer:
E = 2.5 x 10⁻¹⁴ J
Explanation:
given,
diameter = 1.33 x 10⁻¹⁴ m
mass = 6.64 x 10⁻²⁷ kg
wavelength is equal to diameter
de broglie wavelength equal to diameter



v = 7.5 x 10⁶ m/s
Kinetic energy is equal to


E = 2.5 x 10⁻¹⁴ J
Answer:
Explanation:
Given
ambient Pressure =98.10 kPa
(a)gauge pressure 152 kPa
we know
Absolute pressure=gauge pressure+Vacuum Pressure
=152+98.10=250.1 kPa or 36.27 psi
(b)
=67.5 Torr or 8.99 kpa
as 1 Torr is 0.133 kPa
=8.99+98.10=107.09 kPa or 15.53 psi
(c)
=0.1 bar or 10 kPa
Thus absolute pressure=98.10-10=88.10 kPa or 12.77 psi
as 1 kPa is equal to 0.145 psi
(d)
=0.84 atm or 85.113 kPa
as 1 atm is equal to 101.325 kPa
=98.10-85.11=12.99 kPa or 1.88 psi
Answer:
66 rpm
Explanation:
The period of oscillation is given by
where T is time period of oscillation which is given as 0.35 s, k s spring constant and m is the mass of the object attached to the spring.
Also, net force is given by
Net force=
where
is the elongation, L is original length,
is the angular velocity
Substituting the equation of
into the above we obtain