Answer:
a) F = (137.4 i ^ + 185 j ^) N
b) F = 230.2 N , θ = 53.5º
Explanation:
In this exercise we ask to find the net force, for which we will define a coordinate system fix the donkey and use trigonometry to decompose the forces
Jack F₁ₓ = 63.9 N
Jill F₂ = 79.1 N with direction 45º to the left
cos (180 -45) = F₂ₓ / F₂
sin 135 = / F₂
F₂ₓ = F₂ cos 135
F_{2y} = F₂ sin 135
F₂ₓ = 79.1 cos 135 = -55.9 N
F_{2y} = 79.1 sin 135 = 55.9 N
Jane F₃ = 183 N direction 45th to the right
cos 45 = F₃ₓ / F3
sin 45 = F_{3y} / F3
F₃ₓ = F₃ cos 45 = 183 cos 45
F_{₃y} = F₃ sin 45 = 183 sin 45
F₃ₓ = 129.4 N
F_{3y} = 129.4 N
we add each component of the force
Fₓ = F₁ₓ + F₂ₓ + F₃ₓ
Fₓ = 63.9 + (-55.9) + 129.4
Fₓ = 137.4 N
F_{y} = F_{2y} + F_{3y}
F_{2y} = 55.9 + 129.4
F_{2y} = 185.3 N
we can give the result of the forms
a) F = (137.4 i ^ + 185 j ^) N
b) in the form of module and angle
F = RA (Fₓ² + F_{y}²)
F = Ra (137² + 185²)
F = 230.2 N
tan θ = F_{y} / Fₓ
θ = tan⁻¹ F_{y} / Fₓ
θ = tan⁻¹ (185/137)
θ = 53.5º