A single fixed pulley can be used to raise or lower lightweight objects.
Option b
<u>Explanation:</u>
A pulley is a simple machine tool which is used to make lifting or lowering tasks easy. A single fixed pulley is a system involving only one pulley fixed on a constant rigid support with a rope wrapped around the wheel. Such a system can be used only to change the direction of applied force in raising or lowering small, lightweight objects which need minimal work force.
A single fixed pulley system helps only in redirecting the applied force direction by using a rope and wheel assembly. The work done in such a case remains the same and hence it is not preferred to use it in lifting heavy objects. Neither is the required force reduced in case of a single fixed pulley system. A movable pulley helps in achieving (A) and (C).
Answer:
Loudness of the second sound is more than the first one.
Explanation:
There are two sounds, the second sound is identical to first but the loudness of second is more than the first one.
As the frequency is same so the itch is same for both the sounds.
As the loudness depends on the amplitude of the sound so the loudness of the second sound is more than the first sound.
Undefined shape, particles or atoms are loose, wet
Answer:
The constant angular acceleration of the wheel is 12.16 rad/s²
Explanation:
Given;
initial angular distance, θ = 28
time of the motion, t = 5 s
initial angular velocity is calculated as;

final angular velocity is given as, 
The constant angular acceleration is calculated as;

Therefore, the constant angular acceleration of the wheel is 12.16 rad/s²
Answer:
<em>A) 7.37 x 10^-4 N</em>
<em>B) The resultant force will be towards the -x axis</em>
Explanation:
The three masses have mass = 3500 kg
For the force of attraction between the mass at the origin and the mass -100 cm away:
distance r = 100 cm = 1 m
gravitational constant G= 6.67×10^−11 N⋅m^2/kg^2
Gravitational force of attraction
= 
where G is the gravitational constant
m is the mass of each of the masses
r is the distance apart = 1 m
substituting, we have
=
= 8.17 x 10^-4 N
For the force of attraction between the mass at the origin and the mass 320 cm away
distance r = 320 cm = 3.2 m
= 
substituting, we have
=
= 7.98 x 10^-5 N
Resultant force = (8.17 x 10^-4 N) - (7.98 x 10^-5 N) = <em>7.37 x 10^-4 N</em>
<em></em>
<em>B) The resultant force will be towards the -x axis</em>