Answer:
The correct answer would be A.
Explanation:
I have gotten this answer many times and have never failed once just trust me.
Answer:
![\huge\boxed{\sf a = 5 \ ms^{-2}}](https://tex.z-dn.net/?f=%5Chuge%5Cboxed%7B%5Csf%20a%20%3D%205%20%5C%20ms%5E%7B-2%7D%7D)
Explanation:
<u>Given:</u>
Force = f = 60 N
Mass = m = 12 kg
<u>Required:</u>
Acceleration = a = ?
<u>Formula:</u>
F = ma
<u>Solution:</u>
Rearranging formula
a = F / m
a = 60 / 12
a = 5 ms⁻²
![\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Crule%5B225%5D%7B225%7D%7B2%7D)
Hope this helped!
<h3>~AH1807</h3><h3>Peace!</h3>
Answer:
The combination, L = I / (m * R) , that appears in the equation for the period of a physical pendulum, is called radius of oscillations
Hope this helps :]
Answer:
1.991 × 10^(8) N/m²
Explanation:
We are told that its volume increases by 9.05%.
Thus; (ΔV/V_o) = 9.05% = 0.0905
To find the force per unit area which is also pressure, we will use bulk modulus formula;
B = Δp(V_o/ΔV)
Making Δp the subject gives;
Δp = B(ΔV/V_o)
Now, B is bulk modulus of water with a value of 2.2 × 10^(9) N/m²
Thus;
Δp = 2.2 × 10^(9)[0.0905]
Δp = 1.991 × 10^(8) N/m²