Answer:
T’= 4/3 T
The new tension is 4/3 = 1.33 of the previous tension the answer e
Explanation:
For this problem let's use Newton's second law applied to each body
Body A
X axis
T = m_A a
Axis y
N- W_A = 0
Body B
Vertical axis
W_B - T = m_B a
In the reference system we have selected the direction to the right as positive, therefore the downward movement is also positive. The acceleration of the two bodies must be the same so that the rope cannot tension
We write the equations
T = m_A a
W_B –T = M_B a
We solve this system of equations
m_B g = (m_A + m_B) a
a = m_B / (m_A + m_B) g
In this initial case
m_A = M
m_B = M
a = M / (1 + 1) M g
a = ½ g
Let's find the tension
T = m_A a
T = M ½ g
T = ½ M g
Now we change the mass of the second block
m_B = 2M
a = 2M / (1 + 2) M g
a = 2/3 g
We seek tension for this case
T’= m_A a
T’= M 2/3 g
Let's look for the relationship between the tensions of the two cases
T’/ T = 2/3 M g / (½ M g)
T’/ T = 4/3
T’= 4/3 T
The new tension is 4/3 = 1.33 of the previous tension the answer e
Answer:
The speed of the sound wave on the string is 545.78 m/s.
Explanation:
Given;
mass per unit length of the string, μ = 4.7 x 10⁻³ kg/m
tension of the string, T = 1400 N
The speed of the sound wave on the string is given by;

where;
v is the speed of the sound wave on the string
Substitute the given values and solve for speed,v,

Therefore, the speed of the sound wave on the string is 545.78 m/s.
The brainstem is the innermost region of the brain. Considered to be the "trunk" of the brain, the brainstem is the posterior region of the brain composed of three main parts: medulla oblongata, pons, and midbrain. It is a continuous structure connected to the spinal cord.
I am crossed between A and D but i think A is the correct one.