Answer:
=> 2.8554 g/mL
Explanation:
To determine the formula to use in solving such a problem, you have to consider what you have been given.
We have;
mass (m) = 16.59 g
Volume (v) = 5.81 mL
From our question, we are to determine the density (rho) of the rock.
The formula:

Substitute the values into the formula:

= 2.8554 g/mL
Therefore, the density (rho) of the rock is 2.8554 g/mL.
Its period 5 from 5s25p6, with Xenon(54) as the noble gas. 2+6 = 8 electrons
54+8 = 62, or Sm.
Answer:
The answer is 7600 nm.
Explanation:
As, Y = 0.25 = [ L ÷ (400 + (L)]
0.95 x 400 + 0.25 [ L] = [ L ]
380.25 = [ L ] - 0.95 [ L ]
= 0.05 [L]
[L] = 380 ÷ 0.05 = 7600nm
Answer:
485.76 g of CO₂ can be made by this combustion
Explanation:
Combustion reaction:
2 C₄H₁₀(g) + 13 O₂ (g) → 8 CO₂ (g) + 10 H₂O (g)
If we only have the amount of butane, we assume the oxygen is the excess reagent.
Ratio is 2:8. Let's make a rule of three:
2 moles of butane can produce 8 moles of dioxide
Therefore, 2.76 moles of butane must produce (2.76 . 8)/ 2 = 11.04 moles of CO₂
We convert the moles to mass → 11.04 mol . 44g / 1 mol = 485.76 g
Answer: 10 electrons
Explanation:
N represents Nitrogen. Nitrogen has an atomic number of 7, this means in ground state it has 7 electrons also.
But N-3, means Nitrogen has gained 3 more electrons. So, we have 10 electrons