Years of research have demonstrated that rats are intelligent creatures who experience pain and pleasure, care about one another, are able to read the emotions of others, and would assist other rats, even at their own expense.
<h3>Experiments:</h3>
In trials carried out at Brown University in the 1950s, rats were trained to press a lever for food, but they stopped pressing the lever when they noticed that with each press, a rat in an adjacent cage would scream in pain (after experiencing an electric shock).
Rats were trained to press a lever to lower a block that was hanging from a hoist by electric shocks administered by experimenters. A rat was subsequently hoisted into a harness by the experimenters, and according to their notes, "This animal normally shrieked and wriggled sufficiently while dangling, and if it did not, it was jabbed with a sharp pencil until it exhibited indications of discomfort." Even if it wasn't in danger of receiving a shock, a rat watching the scenario from the floor would pull a lever to lower the hapless rodent to safety.
Learn more about experiments on rats here:
brainly.com/question/13625715
#SPJ4
Answer:
Because of the formula
Explanation:
In this problem we are describing two different processes:
- Nuclear fission occurs when a heavy, unstable nucleus breaks apart into two or more lighter nuclei
- Nuclear fusion occurs when two (or more) light nuclei fuse together producing a heavier nucleus
In both cases, the total mass of the final products is smaller than the total mass of the initial nuclei.
According to Einsten's formula, this mass difference has been converted into energy, as follows:
where:
E is the energy released in the reaction
is the mass defect, the difference between the final total mass and the initial total mass
is the speed of light
From the formula, we see that the factor is a very large number, therefore even if the mass defect is very small, nuclear fusion and nuclear fission release huge amounts of energy.
Answer:
dart
Explanation:
dart and sun and water so that the plant be okay
The answer is C. You must divide your wavelength and your frequency to get your answer.