1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Korvikt [17]
3 years ago
9

Identify three situations in which convection occurs.

Physics
2 answers:
Minchanka [31]3 years ago
3 0
A boiling pot of water (the water travels in a current throughout the pot), a hot air balloon (hot air rises, making the balloon rise) , and cup of a steaming, hot liquid (hot air rises, creating steam) are all situations where convection occurs. 
serg [7]3 years ago
3 0

Sample Response: Convection occurs in a pot of boiling water and in a lava lamp. It also occurs in Earth’s interior and in the Sun’s interior. Convection also takes place in the atmosphere, where it drives air circulation, and in the ocean, where it is partially responsible for ocean circulation.

You might be interested in
Several springs are connected as illustrated below in (a). Knowing the individual springs stiffness k1 = 20 N/m, k2 = 30 N/m, k3
Hatshy [7]

Answer:

The equivalent stiffness of the string is 8.93 N/m.

Explanation:

Given that,

Spring stiffness is

k_{1}=20\ N/m

k_{2}=30\ N/m

k_{3}=15\ N/m

k_{4}=20\ N/m

k_{5}=35\ N/m

According to figure,

k_{2} and k_{3} is in series

We need to calculate the equivalent

Using formula for series

\dfrac{1}{k}=\dfrac{1}{k_{2}}+\dfrac{1}{k_{3}}

k=\dfrac{k_{2}k_{3}}{k_{2}+k_{3}}

Put the value into the formula

k=\dfrac{30\times15}{30+15}

k=10\ N/m

k and k_{4} is in parallel

We need to calculate the k'

Using formula for parallel

k'=k+k_{4}

Put the value into the formula

k'=10+20

k'=30\ N/m

k_{1},k' and k_{5} is in series

We need to calculate the equivalent stiffness of the spring

Using formula for series

k_{eq}=\dfrac{1}{k_{1}}+\dfrac{1}{k'}+\dfrac{1}{k_{5}}

Put the value into the formula

k_{eq}=\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{35}

k_{eq}=8.93\ N/m

Hence, The equivalent stiffness of the string is 8.93 N/m.

3 0
3 years ago
BLANK causes movement of an object, whereas BLANK is the work done on an object in a given amount of time.
Setler [38]
The first one is Force & the second one Power.
3 0
4 years ago
Read 2 more answers
X-rays with an energy of 300 keV undergo Compton scattering from a target. If the scattered rays are detected at 30 relative to
lys-0071 [83]

Answer:

a) \Delta \lambda = \lambda' -\lambda_o = \frac{h}{m_e c} (1-cos \theta)

For this case we know the following values:

h = 6.63 x10^{-34} Js

m_e = 9.109 x10^{-31} kg

c = 3x10^8 m/s

\theta = 37

So then if we replace we got:

\Delta \lambda = \frac{6.63x10^{-34} Js}{9.109 x10^{-31} kg *3x10^8 m/s} (1-cos 37) = 4.885x10^{-13} m * \frac{1m}{1x10^{-15} m}= 488.54 fm

b) \lambda_0 = \frac{hc}{E_0}

With E_0 = 300 k eV= 300000 eV

And replacing we have:

\lambda_0 = \frac{1240 x10^{-9} eV m}{300000eV}=4.13 x10^{-12}m = 4.12 pm

And then the scattered wavelength is given by:

\lambda ' = \lambda_0 + \Delta \lambda = 4.13 + 0.489 pm = 4.619 pm

And the energy of the scattered photon is given by:

E' = \frac{hc}{\lambda'}= \frac{1240x10^{-9} eVm}{4.619x10^{-12} m}=268456.37 eV - 268.46 keV

c) E_f = E_0 -E' = 300 -268.456 kev = 31.544 keV

Explanation

Part a

For this case we can use the Compton shift equation given by:

\Delta \lambda = \lambda' -\lambda_0 = \frac{h}{m_e c} (1-cos \theta)

For this case we know the following values:

h = 6.63 x10^{-34} Js

m_e = 9.109 x10^{-31} kg

c = 3x10^8 m/s

\theta = 37

So then if we replace we got:

\Delta \lambda = \frac{6.63x10^{-34} Js}{9.109 x10^{-31} kg *3x10^8 m/s} (1-cos 37) = 4.885x10^{-13} m * \frac{1m}{1x10^{-15} m}= 488.54 fm

Part b

For this cas we can calculate the wavelength of the phton with this formula:

\lambda_0 = \frac{hc}{E_0}

With E_0 = 300 k eV= 300000 eV

And replacing we have:

\lambda_0 = \frac{1240 x10^{-9} eV m}{300000eV}=4.13 x10^{-12}m = 4.12 pm

And then the scattered wavelength is given by:

\lambda ' = \lambda_0 + \Delta \lambda = 4.13 + 0.489 pm = 4.619 pm

And the energy of the scattered photon is given by:

E' = \frac{hc}{\lambda'}= \frac{1240x10^{-9} eVm}{4.619x10^{-12} m}=268456.37 eV - 268.46 keV

Part c

For this case we know that all the neergy lost by the photon neds to go into the recoiling electron so then we have this:

E_f = E_0 -E' = 300 -268.456 kev = 31.544 keV

3 0
3 years ago
Read 2 more answers
The second part of estate planning consists of:
Akimi4 [234]
Transferring your estate in the manner you have specified 
4 0
3 years ago
Read 2 more answers
1) Calculate the potential energy of a 5.00 kg object sitting on a 3.00 meter high ledge.
maria [59]

Answer:

15kg

Explanation:

5 0
3 years ago
Other questions:
  • If you walk 1.2 km north and then 1.6 km east, what are the magnitude and direction of your resultant displacement?
    14·1 answer
  • Which statement below best describes the relationship between the voltage, resistance, and current?
    8·1 answer
  • Rate my profile pic up to a 100
    8·1 answer
  • The slope of the line on a speed-time graph tells the speed.
    10·1 answer
  • A 1500 kg car travelling at 25 m/s collides with a 2500 kg van which had
    15·1 answer
  • What's wrong with the following statement? “The racing car turns around
    11·1 answer
  • g Determine the magnetic field midway between two long straight wires 2.0 cm apart in terms of the current I in one when the oth
    10·1 answer
  • Review Conceptual Example 6 as background for this problem. A car is traveling to the left, which is the negative direction. The
    12·1 answer
  • Please help!! giving a lot of points
    11·1 answer
  • How much work does it take to lift 345 boxes to a height of 6.00 m of each box has a mass of 7.89 kg
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!