Answer:
The product of the decay its Sulfur-32
Explanation:
Phosphorus-32 ( lets write it
, where the number above its the atomic mass and the number below the atomic number) decays turning a neutron into a proton and emitting radiation on the form of a electron. This is the beta minus decay, and, actually, an electronic antineutrino its also produced. We can write this decay for an X isotope with a Y isotope produced as:

where
its the electron, and
the electronic antineutrino . We can see that the atomic number increases by one (cause a proton it produced and retained into the nucleus), and the atomic mass is approximately the same (there is a small difference between the neutron and proton mass, but its very small).
So, Phosphorus-32 (atomic number 15) will turn to an element with atomic number 16, and atomic mass 32, as:
.
.
The Y isotope must have an atomic number of 16 and an atomic mass of 32. The element with atomic number 16 its Sulfur (S), so, our decay its
.
and the product of such decay its Sulfur-32
Explanation:
Efficiency is a way of describing the amount of useful output a process or machine can generate as a percentage of the input required to make it go. In other words, it compares how much energy is used to do work versus how much is lost or wasted to the environment. The more efficient the machine, the less energy wasted.
For example, if a heat engine is able to turn 75 percent of the fuel it receives into motion, while 25 percent is lost as heat in the process, it would be 75 percent efficient. Out of the original 100 percent of the fuel, 75 percent was output as useful work.
the equation:
energy efficiency =useful output energy/total input energy
Answer:
compound A
Explanation:
because covalent compounds can't conduct electricity and because they also have low boiling points
First do 1.6 m (how far he jumps) 9.8 m/s (what gravity is measured at) then times 2
= 31.36
Sq root = 5.6
Answer:
Explanation:
The "traditional" form of Coulomb's law, explicitly the force between two point charges. To establish a similar relationship, you can use the integral form for a continuous charge distribution and calculate the field strength at a given point.
In the case of moving charges, we are in presence of a current, which generates magnetic effects that in turn exert force on moving charges, therefore, no longer can consider only the electrostatic force.