Answer:
1.67mol/L
Explanation:
Data obtained from the question include:
Mole of solute (K2CO3) = 5.51 moles
Volume of solution = 3.30 L
Molarity =?
Molarity is simply the mole of solute per unit litre of the solution. It can be expressed mathematically as:
Molarity = mole of solute /Volume of solution
Molarity = 5.51 mol/3.30 L
Molarity = 1.67mol/L
Therefore, the molarity of K2CO3 is 1.67mol/L
Ionic or electrovalent compounds support the theory of ionic bonding because they are compounds composed of charged particles formed when an atom gains or loses electrons.
Electrovalent compounds posses:
- High boiling and melting points.
- Form crystals.
<h3>What is ionic bonding?</h3>
This is the transfer of valence electrons from metals to non metals to form ionic compounds. It also refers to a chemical bond formed between two ions with opposite charges.
Learn more about ionic compounds:
brainly.com/question/18246121
Answer:
For Mass N, Mass H, and Mass O, the mass is 28.0 g N, 4.0 g H, and 48.0 g respectively
Explanation:
The computation of the mass of each element is given below:
As we know that
A1 mole of ammonium nitrate i.e. 2 mol N, 4 mol H, 3 mol
Now we multiply each of above by the molar masses
For N
= 14.0 g/mol × 2
= 28.0 gN
For H
= 1.0 g/mol × 4
= 4.0 gN
ANd, for O
= 16.0 g/mol × 3
= 48.0 gN
Hence, For Mass N, Mass H, and Mass O, the mass is 28.0 g N, 4.0 g H, and 48.0 g respectively
<h3>Al + O2 -> Al2O3</h3>
Balance it:
<h3>2Al + 3O2 -> 2Al2O3</h3><h3 />
So you need 2 Al and 3 O2 to make 2 Al2O3 (aluminum oxide).
I'm going to assume you have all the O2 you need.
Since 2 mols of Al is needed to make 2 mols of the product, it's a 1:1 ratio. You get as much aluminum oxide for as much aluminum you burn.
So 12.5 mols if there is not a lack of the O2.