Answer:
a. Microwaves—3 and infrared waves—1
Explanation:
Microwaves and infrared waves are both part of the electromagnetic spectrum, but they have different frequency and wavelength.
In particular:
- Microwaves are long-wavelength electromagnetic waves, with wavelength between 1 mm and 1 m. Their wavelength is longer than visible light
- Infrared waves are also long-wavelength electromagnetic waves, but their wavelength is shorter than microwaves: between 700 nm and 1 mm. Their wavelength is also longer than visible light.
The two types of waves are also used for different purposes. In particular:
- Infrared waves are emitted by any hot object, and their intensity depends on the temperature of the object. Therefore, they are used in astronomy to show the heat released by astronomical objects (option 1)
- Microwaves are used to study the Cosmic Microwave Background (CMB). This is electromagnetic radiation that permeates the whole universe, and its wavelength depends inversely on the local temperature. Therefore, areas with longer wavelength have lower temperature, and viceversa. Therefore, microwaves are used to measure temperature differences in space (option 3).
If there are two equal and opposite forces on the SAME THING, then the thing doesn't accelerate. You're right about that. But the action and reaction forces act on two different things. The bullet and the rifle. The ball and the bat. The airplane and the air. etc. So BOTH can accelerate.
Choice A is correct.======Kinetic energy equation: KE = (1/2)(m)(v²)This tells us that KE is directly proportional to mass and the square of velocity. In other words, the more mass and more velocity an object has, the more kinetic energy.If an object is sitting at the top of a ramp, there is no velocity and therefore no kinetic energy. Choices B and D are wrong.A golf ball has more mass than a ping-pong ball, so a ping-pong ball would have less kinetic energy than a golf ball rolling off the end of a ramp. Choice C is wrong.Choice A is correct.
Answer:
The correct option is;
B) No, the Navy vessel is slower
Explanation:
The speed of some torpedoes can be as high as 370 km/h. The average speed of a fast Navy vessel is approximately 110 km/h
Therefore, the torpedoes travel approximately 3 times as fast as the (slower) Navy vessel, such that the torpedo covers three times the distance of the Navy vessel in the same time and therefore, if the Navy vessel and the torpedo continue in a straight line (in the same direction) due north the vessel can not outrun the torpedo
Therefore, no the Navy vessel travels slower than a torpedo.