<h2>
The magnitude 24 (
) of the acceleration of the particle when the particle is not moving.</h2>
Explanation:
Given,
A particle moving along the x-axis has a position given by
m ........ (1)
To find, the magnitude (
) of the acceleration of the particle when the particle is not moving = ?
Differentiating equation (1) w.r.t, 't', we get

⇒
....... (2)
⇒ 
⇒ 
⇒ t = 2 s
Again, differentiating equation (2) w.r.t, 't', we get

Put t = 2, we get

Thus, the magnitude 24 (
) of the acceleration of the particle when the particle is not moving.
Answer:
Hey buddy, it is D
Explanation: Just do the math, take 30 and then subtract 20 ok and then yo would have 10, then the 10is really the 30 and the 30 is pointing to the left so 10 newtons to the left and also your welcome
The unit of force is the 'Newton'.
1 newton is the force that accelerates 1 kilogram of mass
at the rate of 1 meter per second-squared.
1 N = 1 kg-m/s²
-- A force of 1 pound is about 4.448 newtons.
-- A force of 1 newton is about 3.6 ounces.
Angular acceleration is simply the ratio of the Torque
over the rotation inertia, that is:
Angular acceleration = Torque / Rotational inertia
So substituting the values:
Angular acceleration = 2.4 N m / 4.0 kg m2
<span>Angular acceleration = 0.7 rad/s^2</span>
Answer: 259.2 KJ
Explanation:
The formula calculate work don in a circuit is given by :-
, where Q is charge and V is the potential difference.
The formula to calculate charge in circuit :-
, where I is current and t is time.
Given : Current : 
Potential difference : 
Time : 
Now, 
Then, 
Hence, the work done = 259.2 KJ