Answer: The person sitting in the middle of the train sees the back of the train enter ing the tunnel before the front end comes out.
Explanation:
Answer:
The possible thickness of the soap bubble = 
Explanation:
<u>Given:</u>
- Refractive index of the soap bubble,

- Wavelength of the light taken,

Let the thickness of the soap bubble be
.
It is given that the soap bubble appears very bright, it means, there is a constructive interference takes place.
For the constructive interference of light through a thin film ( soap bubble), the condition of constructive interference is given as:

where
is the order of constructive interference.
Since the soap bubble is appearing very bright, the order should be 0, as
order interference has maximum intensity.
Thus,

It is the possible thickness of the soap bubble.
Answer:
Angle of reflection of light is 34 degree
Explanation:
As per law of reflection of light we know that
angle of incidence of light = angle of reflection of light
So here we know that
angle of incidence on the surface of oil is given as

so we know that

so here we can say that reflection angle of light will be same as angle of incidence

Answer:
s=62.5m
Explanation:
Use the equation v²=u²+2as, where v is the final velocity, u is the initial velocity, a is the acceleration and s is the distance.
0²=25²+2(-5)s
10s=625
s=62.5m
Answer:
1850 N
Explanation:
The formula for friction force between the load and plane is given as ;
F= μ*N
N = mg cos θ
To find θ, which is the angle the inclined plane makes with the ground at the height of 1.5 m
Sin θ = 1.5/4.5
Sin θ = 0.3333
Sin⁻{0.3333} = 19.50°
θ = 19.50°
Finding N , where m= 500 N , and g= 9.81
N = mg cos θ
N= 500 * 9.81 * cos 19.50°
N= 4624 N
Coefficient of kinetic friction is calculated as;
μ=F/W
μ = 200/500 = 0.4
The magnitude of kinetic friction is given as;
Fk= μ * N
Fk = 0.4 * 4624
Fk= 1850 N