A summary of the Law of multiple proportions is that if A and B form more than one compound, and B1 is the amount of element B which reacts with a fixed mass of A in compound 1, and B2 is the amount of B which reacts with the same fixed mass of B to form compound 2, then the ratio B1:B2 will be small whole numbers.
This law is rather simplistic, and given the range of compounds known today the definition of 'small' is now rather large... but, to answer the question:
in compound one 1.14133g of B reacts with 1g of A. (1.14133=53.3/46.7)
The valence electron configuration for antimony (Sb) is:
Sb = 5s²5p³5d⁰
In SbCl₅²⁻, antimony has a -2 charge i.e. it has 2 additional electrons
Sb²⁻ = 5s²5p⁵5d⁰
Following a two electron transition from p→d orbital we have:
Sb²⁻ = 5s²5p³5d²
There is a total of 5 unpaired electrons (3 in the p and 2 in the d) which can form five bonds with the 5 Cl atoms.
Thus the hybridisation of Sb in SbCl₅²⁻ is sp³d²
Answer:
since there is a decimal point at the end, they are all significant figures so the answer is 5
Answer:
V₂ = 530.5 mL
Explanation:
Given data:
Initial temperature = 20.0°C
Final temperature = 40.0 °C
Final volume = 585 mL
Initial volume = ?
Solution:
Initial temperature = 20.0°C (20+273 = 293 K)
Final temperature = 40.0 °C (40+273 = 323 K)
Solution:
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
V₁ = V₂T₁ /T₂
V₂ = 585 mL × 293 K / 323 K
V₂ = 171405 mL.K / 323 K
V₂ = 530.5 mL