1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Semenov [28]
3 years ago
7

Why is the pressure so high deep inside the outer planets?

Physics
1 answer:
AveGali [126]3 years ago
3 0

Answer:

Due to its larger size

Explanation:

This is due to those planets being much larger than Earth. The larger a planet is, the more gravity that planet has, since gravity is mainly calculated based on the mass and radius of the planet. Also since the pressure deep inside of the planet depends mainly on the gravity of that planet on the surface, this is calculated as the square of the planet's surface gravity. Ultimately, the bigger the planet is the higher the pressure deep inside the planet will be.

You might be interested in
what would the net force be on the box in the problems shown below.( both force and direction).​ for all four diagrams. please e
DIA [1.3K]

Answer:
A) object moves 20 N [West] or -20 N [East]
B) object moves 6 N [South] or -6 N [North]
C) object moves 90 N [West] or -90 N [East]
D) object does not move and is at rest*

*Rest means 0


Why:

A)both forces from north and south that are pushing against the object neutralize each other. Assume that north is positive and south is negative: 20 [N] + (-20) [S] = 0
On West and east, you can see that west has a greater force. Assume that west is negative and east is positive: 50 [E] + (-70) [W] = -20 [E]
8 0
3 years ago
A short current element dl⃗ = (0.500 mm)j^ carries a current of 5.40 A in the same direction as dl⃗ . Point P is located at r⃗ =
SashulF [63]

Answer:

The magnetic field along x axis is

B_{x}=1.670\times10^{-10}\ T

The magnetic field along y axis is zero.

The magnetic field along z axis is

B_{z}=3.484\times10^{-10}\ T

Explanation:

Given that,

Length of the current element dl=(0.5\times10^{-3})j

Current in y direction = 5.40 A

Point P located at \vec{r}=(-0.730)i+(0.390)k

The distance is

|\vec{r}|=\sqrt{(0.730)^2+(0.390)^2}

|\vec{r}|=0.827\ m

We need to calculate the magnetic field

Using Biot-savart law

B=\dfrac{\mu_{0}}{4\pi}\timesI\times\dfrac{\vec{dl}\times\vec{r}}{|\vec{r}|^3}

Put the value into the formula

B=10^{-7}\times5.40\times\dfrac{(0.5\times10^{-3})\times(-0.730)i+(0.390)k}{(0.827)^3}

We need to calculate the value of \vec{dl}\times\vec{r}

\vec{dl}\times\vec{r}=(0.5\times10^{-3})\times(-0.730)i+(0.390)k

\vec{dl}\times\vec{r}=i(0.350\times0.5\times10^{-3}-0)+k(0+0.730\times0.5\times10^{-3})

\vec{dl}\times\vec{r}=0.000175i+0.000365k

Put the value into the formula of magnetic field

B=10^{-7}\times5.40\times\dfrac{(0.000175i+0.000365k)}{(0.827)^3}

B=1.670\times10^{-10}i+3.484\times10^{-10}k

Hence, The magnetic field along x axis is

B_{x}=1.670\times10^{-10}\ T

The magnetic field along y axis is zero.

The magnetic field along z axis is

B_{z}=3.484\times10^{-10}\ T

7 0
3 years ago
A cart traveling at 0.3 m/s collides with stationary object. After the collision, the cart rebounds in the opposite direction. T
Nady [450]
The first collision because a greater amount of momentum must be taken and used in order to push the cart back, giving it a greater mass and impulse
6 0
4 years ago
please help! find magnitude and direction (the counterclockwise angle with the +x axis) of a vector that is equal to a + c
-BARSIC- [3]

Answer:

Option (2)

Explanation:

From the figure attached,

Horizontal component, A_x=A\text{Sin}37

A_x=12[\text{Sin}(37)]

     = 7.22 m

Vertical component, A_y=A[\text{Cos}(37)]

    = 9.58 m

Similarly, Horizontal component of vector C,

C_x  = C[Cos(60)]

     = 6[Cos(60)]

     = \frac{6}{2}

     = 3 m

C_y=6[\text{Sin}(60)]

    = 5.20 m

Resultant Horizontal component of the vectors A + C,

R_x=7.22-3=4.22 m

R_y=9.58-5.20 = 4.38 m

Now magnitude of the resultant will be,

From ΔOBC,

R=\sqrt{(R_x)^{2}+(R_y)^2}

   = \sqrt{(4.22)^2+(4.38)^2}

   = \sqrt{17.81+19.18}

   = 6.1 m

Direction of the resultant will be towards vector A.

tan(∠COB) = \frac{\text{CB}}{\text{OB}}

                  = \frac{R_y}{R_x}

                  = \frac{4.38}{4.22}

m∠COB = \text{tan}^{-1}(1.04)

             = 46°

Therefore, magnitude of the resultant vector will be 6.1 m and direction will be 46°.

Option (2) will be the answer.

6 0
3 years ago
Acceleration is defined as the rate of change for which of the following
Minchanka [31]
_Award brainliest if helped!
Velocity


Note : Not speed as Acceleration is a vector!
6 0
3 years ago
Other questions:
  • Which involves more work in the scientific sense: moving the boxes and the furniture down from the second floor or up to the fif
    6·1 answer
  • The type of seismic waves that arrive at the surface first and move by compressing and expanding the ground like an accordion ar
    12·2 answers
  • Two small plastic spheres between them has magnitude 0.22 N. What is the charge on each sphere is one the other? Explain whether
    12·1 answer
  • Large-scale environmental catastrophes _______.
    13·1 answer
  • What is the momentum of a dog of mass 14 kg that is running east with a
    12·1 answer
  • This term means pertaining to or exist at or from the very beginning.
    6·1 answer
  • Explain why a valve would last longer in the pulmonary position than in the aortic position
    12·1 answer
  • A large dog with a mass of 30 kg chases a car at 2 m/s. What is the<br> magnitude of its momentum?
    10·1 answer
  • 2h 10min expressed in seconds?<br> Step by step please
    12·2 answers
  • What is the relationship between and experiment and a hypothesis
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!