Enzymes catalyze the chemical reactions, they act upon the reaction substrates and speed up the reaction. Enzymes have active sites, the places where the reaction substrates interact with the enzyme bringing about the conversion of substrates to products. So, as the enzyme concentration increases the rate of reaction increases till a point where the rate is leveled off. The rate does not further increase, as the substrate might have become limiting at that point. All the available amount of substrate would have been associated with the active sites of the enzymes. So, at that point although there is enough catalyst, lack of substrate would limit the rate of reaction.
You need to find moles of the gas, so you would use the ideal gas law:
PV=nRT
Pressure
Volume
n=moles
R= gas constant
Tenperature in Kelvin
n= PV/RT
(1.00atm)(1.35L)/(.08206)(332K) = 0.050mol
Molar mass is grams per mole, so
(3.75g/.050mol) = 75g/mol
Atomic mass Sodium ( Na ) = 22.98 u.m.a
22.98 g ----------------- 6.02x10²³ atoms
175 g ------------------- ?? atoms
175 x ( 6.02x10²³) / 22.98 =
4.58x10²⁴ atoms of Na
hope this helps!
Answer:
t = 37.1 s
Explanation:
The equation for the reaction is given as;
2 N2O5(g) --> 4 NO2 + O2
Initial: 0.110 - -
change: -2x +4x +x
Final: 0.110 - 2x +4x +x
But final = 0.150atm;
0.110 - 2x + 4x + x = 0.150 atm
3x = 0.150 - 0.110
x = 0.0133 atm
Pressure in reactant side;
0.110 - 2x
0.110 - 2 (0.0133) = 0.0834 atm
The integral rate law expression is given as;
ln ( [A] / [Ao] ) = -kt
k = rate constant = 7.48*10^-3*s-1
ln (0.0834/0.11) = (7.48*10^-3) t
upon solving, t = 37.1 s
Answer:
Option D 2220mmHg
Because there are three samples each with pressure as 740mmHg so in order to find the total pressure we multiply it by 3
Explanation:
I hope this will help you :)