Answer:
Displacement from the starting position is 103.21m
Explanation:
If you draw these directions, it will create the two legs of a triangle.
Using this method, you can visualize why your displacement is what it is.
Using the pythagorean theorem

Plug in both values


c = 103.2085
c= 103.21
Answer:
Explanation:
Given that,
Mass of the thin hoop
M = 2kg
Radius of the hoop
R = 0.6m
Moment of inertial of a hoop is
I = MR²
I = 2 × 0.6²
I = 0.72 kgm²
Period of a physical pendulum of small amplitude is given by
T = 2π √(I / Mgd)
Where,
T is the period in seconds
I is the moment of inertia in kgm²
I = 0.72 kgm²
M is the mass of the hoop
M = 2kg
g is the acceleration due to gravity
g = 9.8m/s²
d is the distance from rotational axis to center of of gravity
Therefore, d = r = 0.6m
Then, applying the formula
T = 2π √ (I / MgR)
T = 2π √ (0.72 / (2 × 9.8× 0.6)
T = 2π √ ( 0.72 / 11.76)
T = 2π √0.06122
T = 2π × 0.2474
T = 1.5547 seconds
T ≈ 1.55 seconds to 2d•p
Then, the period of oscillation is 1.55seconds
Answer:
a) the velocity increases then decreases.
No, gravity pulls every object with the same force irrespective of its shape, size place etc.
Therefore the force of gravity on the iron and wooden piece of same mass is same. Also the force of gravity is same on the crumpled piece of paper as that of plain paper.
Force of gravity is always same.