corrected question:The heavyweight boxing champion of the world punches a sheet of paper in midair, bringing it from rest up to a speed of 26.5 m/s in 0.044 s . The mass of the paper is 0.003 kg. Part A Find the force of the punch on the paper
Answer:
Force=1.8N
Explanation:
Newtons third law states that in every action there is equal and opposite reaction.
The force of the punch will be the force that moves the paper by a speed of 26.5m/s.


m=0.003kg , v=26.5m/s u=0(the paper is punched from rest) t=0.044s

F=1.8N
True, physical excercise helps
Answer:
376966.991 Joules
Explanation:
Given that :
the height = 12 m
Let assume the tank have a thickness = dh
The radius of the tank by using the concept of similar triangle is :


The area of the tank =
The area of the tank = 
The area of the tank = 
The volume of the tank is = area × thickness
= 
Weight of the element = 
where;
= density of water ; which is given as 10000 N/m³
So;
Weight of the element = 
Weight of the element = 
However; the work required to pump this water = weight × height rise
where the height rise = 12 - h
the work required to pump this water =
(12 - h)
the work required to pump this water = 
We can determine the total workdone by integrating the work required to pump this water
SO;
Workdone = 
= 
= ![\mathbf{ 69.44 \pi[ \frac{12h^3}{3}- \frac{h^4}{4}]^{12}}_0} }](https://tex.z-dn.net/?f=%5Cmathbf%7B%2069.44%20%5Cpi%5B%20%5Cfrac%7B12h%5E3%7D%7B3%7D-%20%20%5Cfrac%7Bh%5E4%7D%7B4%7D%5D%5E%7B12%7D%7D_0%7D%20%7D)
= ![\mathbf{69.44 \pi [ \frac{12^4}{3}-\frac{12^4}{4}]}](https://tex.z-dn.net/?f=%5Cmathbf%7B69.44%20%5Cpi%20%5B%20%5Cfrac%7B12%5E4%7D%7B3%7D-%5Cfrac%7B12%5E4%7D%7B4%7D%5D%7D)
= ![\mathbf{69.44 \pi*12^4 [ \frac{4-3}{12}]}](https://tex.z-dn.net/?f=%5Cmathbf%7B69.44%20%5Cpi%2A12%5E4%20%5B%20%5Cfrac%7B4-3%7D%7B12%7D%5D%7D)
= 
= 376966.991 Joules
Answer:
The asteroid requires 5.14 years to make one revolution around the Sun.
Explanation:
Kepler's third law establishes that the square of the period of a planet will be proportional to the cube of the semi-major axis of its orbit:
(1)
Where T is the period of revolution and a is the semi-major axis.
In the other hand, the distance between the Earth and the Sun has a value of
. That value can be known as well as an astronomical unit (1AU).
But 1 year is equivalent to 1 AU according with Kepler's third law, since 1 year is the orbital period of the Earth.
For the special case of the asteroid the distance will be:


That distance will be expressed in terms of astronomical units:
⇒ 
Finally, from equation 1 the period T can be isolated:

Then, the period can be expressed in years:


Hence, the asteroid requires 5.14 years to make one revolution around the Sun.
Answer:
The voltage is 
Explanation:
From the question we are told that
The voltage of the battery is 
The capacitance of the capacitor is 
The resistance of the resistor is 
The time taken is
Generally the voltage of a charging charging capacitor after time t is mathematically represented as

Here
is the voltage of the capacitor when it is fully charged which in the case of this question is equivalent to the voltage of the battery so

