Objects should be cooled before their mass is determined on a sensitive balance because it could damage the balance. Also, because it would give you wrong reading of the mass. Hot objects would warm the air around it. A warm air would expand and would produce convection as it rises causing to give the object a mass that is less than the actual. Another reason would be it would cause instability in the readings, the mass would fluctuate every now and then due to the convection currents around the object. It is always recommended to weigh the masses of objects that are in room temperature.
The correct answer
to this question would be:
<span><span>
A. </span>
No part of your vehicle will extend out into
the traffic lane.</span>
This kind of maneuver only shows your skill
to handle the vehicle in tight spaces, ability to judge distance, and showing control
of the vehicle as you turn into a straight-in parking space.
<span> </span>
Assuming hat both gases obey charles' law at all temperatures are at the same pressure
The correct answer for this question is this one: "Potential Energy."
Potential energy is the energy that is transferred by the movement of electrons through a conductor the electrons create circuit. It is energy at moving. Hope this helps answer your question and have a nice day ahead.
<span>Here the force that is applied between the electron and proton is centripetal, so equate the two forces to determine the velocity.
We know charge of the electron which for both Q1 and Q2, e = 1.60 x 10^-19 C
The Coulombs Constant k = 9.0 x 10^9
Radius r = 0.053 x 10^-9m = 5.3 x 10^-11 m
Mass of the Electron = 9.11 x 10^-31
F = k x Q1 x Q2 / r^2 = m x v^2 / r(centripetal force)
ke^2 / r^2 = m x v^2 / r => v^2 = ke^2 / m x r
v^2 = ((1.60 x 10^-19)^2 x 9.0 x 10^9) / (9.11 x 10^-31 x 5.3 x 10^-11 )
v^2 = 4.77 x 10^12 = 2.18 x 10^6 m/s
Since one orbit is the distance,
one orbit = circumference = 2 x pi x r; distance s = v x t.
v x t = 2 x pi x r => t = (2 x 3.14 x 5.3 x 10^-11) / (2.18 x 10^6)
t = 33.3 x 10^-11 / 2.18 x 10^6 = 15.27 x 10^-17 s
Revolutions per sec = 1 / t = 1 / 15.27 x 10^-17 = 6.54 x 10^15 Hz</span>