Answer:
option B is the correct answer
Explanation:
please follow me and Mark me brainliest please
The Answer Is A
Hope This Helps !
m = mass of the box
N = normal force on the box
f = kinetic frictional force on the box
a = acceleration of the box
μ = coefficient of kinetic friction
perpendicular to incline , force equation is given as
N = mg Cos30 eq-1
kinetic frictional force is given as
f = μ N
using eq-1
f = μ mg Cos30
parallel to incline , force equation is given as
mg Sin30 - f = ma
mg Sin30 - μ mg Cos30 = ma
"m" cancel out
a = g Sin30 - μ g Cos30
inserting the values
1.20 = (9.8) Sin30 - (9.8) Cos30 μ
μ = 0.44
(a) The plastic rod has a length of L=1.3m. If we divide by 8, we get the length of each piece:

(b) The center of the rod is located at x=0. This means we have 4 pieces of the rod on the negative side of x-axis, and 4 pieces on the positive side. So, starting from x=0 and going towards positive direction, we have: piece 5, piece 6, piece 7 and piece 8. Each piece is 0.1625 m long. Therefore, the center of piece 5 is at 0.1625m/2=0.0812 m. And the center of piece 6 will be shifted by 0.1625m with respect to this:

(c) The total charge is

. To get the charge on each piece, we should divide this value by 8, the number of pieces:

(d) We have to calculate the electric field at x=0.7 generated by piece 6. The charge on piece 6 is the value calculated at point (c):

If we approximate piece 6 as a single charge, the electric field is given by

where

and d is the distance between the charge (center of piece 6, located at 0.2437m) and point a (located at x=0.7m). Therefore we have

poiting towards the center of piece 6, since the charge is negative.
(e) missing details on this question.
Answer:
<h2>14.52 J</h2>
Explanation:
The kinetic energy of an object can be found by using the formula

m is the mass
v is the velocity
From the question we have

We have the final answer as
<h3>14.52 J</h3>
Hope this helps you