1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kicyunya [14]
3 years ago
11

A proton is released from rest at the positive plate of a parallelplatecapacitor. It crosses the capacitor and reaches the negat

iveplate with a speed of 50,000 m/s. What will be the final speed ofan electron released from rest at the negative plate
Physics
1 answer:
Triss [41]3 years ago
4 0

Answer:

2.1406 ×10^6 m/sec

Explanation:

we know that energy is always conserved

so from the law of energy conservation

qV=\frac{1}{2}mv^2

here V is the potential difference  

we know that mass of proton = 1.67×10^{-27} kg

we have given speed =50000m/sec

so potential difference V=\frac{\frac{1}{2}\times 1.67\times 10^{-27}50000^2}{1.6\times 10^{-19}}=13.045

now mass of electron =9.11×10^{-31}

so for electron

\frac{1}{2}\times 9.11\times 10^{-31}v^2=1.6\times 10^{-19}\times 13.045=2.1406\times 10^6 m/sec

so the velocity of electron will be 2.1406×10^6 m/sec

You might be interested in
8. The legs of a young man are each 0.650 meters long. What is his maximum walking speed?
Norma-Jean [14]

Answer:

2.52 m/s

Explanation:

When the man takes a step, his foot is stationary while his body revolves around it.  At the point when his body is directly above his foot, there will be no normal force at his maximum speed.

Sum of the forces in the radial direction:

∑F = ma

mg = m v² / r

g = v² / r

v = √(gr)

Given that r = 0.650 m:

v = √(9.8 m/s² × 0.650 m)

v = 2.52 m/s

8 0
3 years ago
Can anyone help me? (physics)
Masja [62]

Answer:

The initial velocity of the golf is 15.7 m/s.

The direction of the golf is 57°.

Explanation:

The following data were obtained from the question:

Time of flight (T) = 2.7 secs

Range (R) = 23 m

Acceleration due to gravity (g) = 9.8 m/s²

Initial velocity (u) =.?

Direction (θ) =.?

T = 2U Sine θ /g

2.7 = 2 × U × Sine θ /9.8

Cross multiply

2.7 × 9.8 = 2 × U × Sine θ

26.46 = 2 × U × Sine θ

Divide both side by 2 × Sine θ

U = 26.46 /2 Sine θ

U = 13.23 / Sine θ ... (1)

R = U² Sine 2θ /g

23 = U² Sine 2θ / 9.8

U = 13.23 / Sine θ

23 = (13.23/ Sine θ)² Sine 2θ / 9.8

23 = (175.0329 / Sine² θ) × Sine 2θ / 9.8

23 = 17.8605/Sine² θ × Sine 2θ

Recall:

Sine 2θ = 2SineθCosθ

23 = 17.8605/ Sine² θ × 2SineθCosθ

23 = 17.8605/ Sine θ × 2Cosθ

23 = 35.721 Cos θ /Sine θ

Cross multiply

23 × Sine θ = 35.721 Cos θ

Divide both side by 23

Sine θ = 35.721 Cos θ /23

Sine θ = 1.5531 × Cos θ

Divide both side by Cos θ

Sine θ /Cos θ = 1.5531

Recall:

Sine θ /Cos θ = Tan θ

Sine θ /Cos θ = 1.5531

Tan θ = 1.5531

Take the inverse of Tan

θ = Tan¯¹ (1.5531)

θ = 57°

Therefore, the direction of the golf is 57°

Thus, the initial velocity can be obtained as follow:

U = 13.23 / Sine θ

θ = 57°

U = 13.23 / Sine 57

U = 13.23/0.8387

U = 15.7 m/s

Therefore, the initial velocity of the golf is 15.7 m/s

8 0
3 years ago
Derive the equation of motion of the block of mass m1 in terms of its displacement x. The friction between the block and the sur
Alenkasestr [34]

Answer:

the equivalent mass : m_e = m_1+m_2+\frac{I}{R^2}

the equation of the motion of the block of mass m_1 in terms of its displacement is = (m_1+m_2+\frac{I}{R^2} )(\bar x) = (m_2gsin \phi) -(m_1gsin \beta)

Explanation:

Let use m₁ to represent the mass of the block and m₂ to represent the mass of the cylinder

The radius of the cylinder  be = R

The distance between the center of the pulley to center of the block to be = x

Also, the angles of inclinations of the cylinder and the block with respect to the ground to be \phi and \beta respectively.

The velocity of the block to be = v

The equivalent mass of the system = m_e

In the terms of the equivalent mass, the kinetic energy of the system can be written as:

K.E = \frac{1}{2} m_ev^2       --------------- equation (1)

The angular velocity of the cylinder = \omega  :  &

The inertia of the cylinder about its center to be = I

The angular velocity of the cylinder can be written as:

v = \omega R

\omega =\frac{v}{R}

The kinetic energy of the system in terms of individual mass can be written as:

K.E = \frac{1}{2}m_1v^2+\frac{1}{2} m_2v^2+\frac{1}{2}I\omega^2

By replacing \omega with \frac{v}{R} ; we have:

K.E = \frac{1}{2}m_1v^2+\frac{1}{2} m_2v^2+\frac{1}{2}I(\frac{v}{R})^2

K.E = \frac{1}{2}(m_1+ m_2+ \frac{I}{R} )v^2   ------------------ equation (2)

Equating both equation (1) and (2); we have:

m_e = m_1+m_2+\frac{I}{R^2}

Therefore, the equivalent mass : m_e = m_1+m_2+\frac{I}{R^2}    which is read as;

The equivalent mass is equal to the mass of the block plus the mass of the cylinder plus the inertia by  the square of the radius.

The expression for the force acting on equivalent mass due to the block is as follows:

f_{block }=m_1gsin \beta

Also; The expression for the force acting on equivalent mass due to the cylinder is as follows:

f_{cylinder} = m_2gsin \phi

Equating the above both equations; we have the equation of motion of the  equivalent system to be

m_e \bar x = f_{cylinder}-f_{block}

which can be written as follows from the previous derivations

(m_1+m_2+\frac{I}{R^2} )(\bar x) = (m_2gsin \phi) -(m_1gsin \beta)

Finally; the equation of the motion of the block of mass m_1 in terms of its displacement is = (m_1+m_2+\frac{I}{R^2} )(\bar x) = (m_2gsin \phi) -(m_1gsin \beta)

8 0
3 years ago
1) the strength of an electromagnet can be increased by
miss Akunina [59]
Using coils of fewer turns on the electromagnet
5 0
3 years ago
To determine the height of a tall building such as Sears Tower in Chicago, Illinois a ball was dropped from the top of the build
Darya [45]

Answer:

The height of Sears Tower is 1448.5 feet.

Explanation:

<h3>We apply the free fall formula to the ball: </h3><h3>y=v_{o} *t+\frac{1}{2} *g*t^{2}</h3><h3>y: The vertical distance the ball moves at time t  </h3><h3>v_{o}i: Initial speed </h3><h3>g=Gravity acceleration=9.8*(\frac{\frac{1ft}{0.305m} }{s^{2} } )</h3>

Known information

We know that the vertical distance (y) that the ball moves in 9,5s  is equal to height of Sears Tower (h).  

Too we know that the ball is released from rest, then,v_{0}=0

Height of Sears Tower calculation:

We replace  in the equation 1 the data following;

y=h

v_{o} =0

g=32,1\frac{ft}{s^{2} }

t= 9,5s

h=0*9.5+\frac{1}{2} *32.1*9.5^{2}

h=1448.5 ft

Answer: The height of Sears Tower is 1448.5 ft

6 0
3 years ago
Other questions:
  • The California sea lion is capable of making extremely fast, tight turns while swimming underwater. In one study, scientists obs
    6·1 answer
  • _____ friction is the force that sliding objects experience
    8·1 answer
  • Newton’s empirical law of cooling/warming of an object is given by ( ), T Tm k dt dT = − where k is a constant of proportionalit
    12·1 answer
  • The wavelengths of light emitted by a firefly span the visible spectrum but have maximum intensity near 550 nm. A typical flash
    5·1 answer
  • How does the intensity of a sound wave change if the distance from the
    9·1 answer
  •  Why are radio waves safer to humans than X- Rays
    8·1 answer
  • A Man is pulling a trolley on a horizontal road with a force of 200N making 30° with the road . Find the horizontal and vertical
    5·2 answers
  • L2
    9·1 answer
  • The equation below can be used to calculate a change in gravitational potential energy. What units must be used for h? Give the
    15·1 answer
  • What particles bond together to
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!