Answer:
1.324 × 10⁷ m
Explanation:
The centripetal acceleration, a at that height above the earth equal the acceleration due to gravity, g' at that height, h.
Let R be the radius of the orbit where R = RE + h, RE = radius of earth = 6.4 × 10⁶ m.
We know a = Rω² and g' = GME/R² where ω = angular speed = 2π/T where T = period of rotation = 1 day = 8.64 × 10⁴s (since the shuttle's period is synchronized with that of the Earth's rotation), G = gravitational constant = 6.67 × 10⁻¹¹ Nm²/kg², ME = mass of earth = 6 × 10²⁴ kg. Since a = g', we have
Rω² = GME/R²
R(2π/T)² = GME/R²
R³ = GME(T/2π)²
R = ∛(GME)(T/2π)²
RE + h = ∛(GMET²/4π²)
h = ∛(GMET²/4π²) - RE
substituting the values of the variables, we have
h = ∛(6.67 × 10⁻¹¹ Nm²/kg² × 6 × 10²⁴ kg × (8.64 × 10⁴s)²/4π²) - 6.4 × 10⁶ m
h = ∛(2,987,477 × 10²⁰/4π² Nm²s²/kg) - 6.4 × 10⁶ m
h = ∛75.67 × 10²⁰ m³ - 6.4 × 10⁶ m
h = ∛(7567 × 10¹⁸ m³) - 6.4 × 10⁶ m
h = 19.64 × 10⁶ m - 6.4 × 10⁶ m
h = 13.24 × 10⁶ m
h = 1.324 × 10⁷ m
Hey can you please help me?
The answer is:
All the above
The explanation:
The volume and the temperature and the number of particles will affect the pressure of an enclosed gas.
because according to boyle's law when the temperature constant so the pressure and volume of a gas have an inverse relationship, when temperature is constant.
when:
PV = nRT
when p is the pressure
V is the volume
n is number of moles
T is temperature
from this law we can know that there is a relation between P and V and when n has a relation with the number of particles so:
volume , temperature and number of particles affect the pressure of an enclosed gas.
Answer:
The new kinetic energy would be 16 times greater than before.
Explanation:
Kinetic energy is found using this formula:
- KE = 1/2mv²
- where KE = kinetic energy (J), m = mass (kg), and v = velocity (m/s)
We can see that kinetic energy is directly proportional to the square of the velocity, meaning that if the speed was increased by 4 times, then the kinetic energy would get increased by a factor of 16.
The velocity just before the ball hits the ground can be found by the equation:
Let's substitute h = 10 m and h = 40 m into this formula.
We can see that the velocity increases by a factor of 4 (10 m → 40 m).
Therefore, this means that the kinetic energy would also be increased by a factor of (4)² = 16. Thus, the answer is D) The new kinetic energy would be 16 times greater than before.