1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Viktor [21]
3 years ago
6

Which statements below are true?

Physics
1 answer:
Ilya [14]3 years ago
7 0

The correct statements are that the speed decreases as the distance decreases and speed increases as the distance increases for the same time.

Answer:

Option A and Option B.

Explanation:

Speed is defined as the ratio of distance covered to the time taken to cover that distance. So Speed = Distance/Time. In other words, we can also state that speed is directly proportional to the distance for a constant time. Thus, the speed will be decreasing as there is decrease in distance for the same time. As well as there will be increase in speed as the distance increases for the same time. So option A and option B are the true options. So if there is decrease in the distance due to direct proportionality the speed will also be decreasing. Similarly, if the distance increases, the speed will also be increasing.

You might be interested in
A mass of 0.5 kg hangs motionless from a vertical spring whose length is 1.10 m and whose unstretched length is 0.50 m. Next the
ser-zykov [4K]

Answer:

The maximum length during the motion is L_{max} = 1.45m

Explanation:

From the question we are told that

           The mass  is  m =0.5 kg

            The vertical spring  length is  L = 1.10m

            The unstretched  length is  L_{un} = 1.30m

          The initial speed is v_i = 1.3m/s

          The new length of the spring L_{new} =  1.30 m

The spring constant k is mathematically represented as

                           k = -\frac{F}{y}

Where F is the force applied  = m * g = 0.5 * 9.8=4.9N

           y is the difference in weight which is   =1.10-0.50=0.6m

The negative sign is because the displacement of the spring (i.e its extension occurs against the force F)

    Now  substituting values accordingly

                    k =  \frac{4.9}{0.6}

                       = 8.17 N/m

The  elastic potential energy is given as E_{PE} = \frac{1}{2} k D^2

  where D is this the is the displacement  

Since Energy is conserved the total elastic potential energy would be

             E_T = initial  \ elastic\ potential \ energy + kinetic \ energy

            E_T = \frac{1}{2} k D_{max}^2 =   \frac{1}{2} k D^2 + \frac{1}{2} mv^2

Substituting value accordingly

                \frac{1}{2} *8.17 *D_{max}^2 =\frac{1}{2} * 8.17*(1.30 - 0.50)^2 + \frac{1}{2} * 0.5 *1.30^2

                4.085 * D_{max}^2 = 3.69

                 D^2_{max} = 0.9033

                D_{max} = 0.950m

So to obtain total length we would add the unstretched length

 So we have

                  L_{max} = 0.950 + 0.5 = 1.45m

                               

               

               

                 

                     

5 0
3 years ago
Read 2 more answers
Why does a box on the seat of a car slide around on the c one the car speeds up slows down or turns a corner?
Feliz [49]
Because the box keeps going straight at the same speed, while the seat under it speeds up, slows down, or changes direction.
8 0
3 years ago
A rocket travels in the x-direction at speed 0.70c with respect to the earth. An experimenter on the rocket observes a collision
marishachu [46]

Answer:

A) The space time coordinate x of the collision in Earth's reference frame is

x \approx 103,46x10^{9}m.

B) The space time coordinate t of the collision in Earth's reference frame is

t=377,29s

Explanation:

We are told a rocket travels in the x-direction at speed v=0,70 c (c=299792458 m/s is the exact value of the speed of light) with respect to the Earth. A collision between two comets is observed from the rocket and it is determined that the space time coordinates of the collision are (x',t') = (3.4 x 10¹⁰ m, 190 s).

An event indicates something that occurs at a given location in space and time, in this case the event is the collision between the two comets. We know the space time coordinates of the collision seen from the reference frame of the rocket and we want to find out the space time coordinates in Earth's reference frame.

<em>Lorentz transformation</em>

The Lorentz transformation relates things between two reference frames when one of them is moving with constant velocity with respect to the other. In this case the two reference frames are the Earth and the rocket that is moving with speed v=0,70 c in the x axis.

The Lorentz transformation is

                          x'=\frac{x-vt}{\sqrt{1-\frac{v^{2}}{c^{2}}}}

                                y'=y

                                z'=z

                          t'=\frac{t-\frac{v}{c^{2}}x}{\sqrt{1-\frac{v^{2}}{c^{2}}}}

prime coordinates are the ones from the rocket reference frame and unprimed variables are from the Earth's reference frame. Since we want position x and time t in the Earth's frame we need the inverse Lorentz transformation. This can be obtained by replacing v by -v and swapping primed an unprimed variables in the first set of equations

                       x=\frac{x'+vt'}{\sqrt{1-\frac{v^{2}}{c^{2}}}}

                           y=y'

                           z=z'

                        t=\frac{t'+\frac{v}{c^{2}}x'}{\sqrt{1-\frac{v^{2}}{c^{2}}}}

First we calculate the expression in the denominator

                            \frac{v^{2}}{c^{2}}=\frac{(0,70)^{2}c^{2}}{c^{2}} =(0,70)^{2}

                                \sqrt{1-\frac{v^{2}}{c^{2}}} =0,714

then we calculate t

                      t=\frac{t'+\frac{v}{c^{2}}x'}{\sqrt{1-\frac{v^{2}}{c^{2}}}}

                      t=\frac{190s+\frac{0,70c}{c^{2}}.3,4x10^{10}m}{0,714}

                      t=\frac{190s+\frac{0,70c .3,4x10^{10}m}{299792458\frac{m}{s}}}{0,714}

                      t=\frac{190s+79,388s}{0,714}

finally we get that

                                     t=377,29s

then we calculate x

                         x=\frac{x'+vt'}{\sqrt{1-\frac{v^{2}}{c^{2}}}}

                         x=\frac{3,4x10^{10}m+0,70c.190s}{0,714}}

                         x=\frac{3,4x10^{10}m+0,70.299792458\frac{m}{s}.190s}{0,714}}

                         x=\frac{3,4x10^{10}m+39872396914m}{0,714}}

                         x=\frac{73872396914m}{0,714}}

                         x=103462740775,91m

finally we get that

                                     x \approx 103,46x10^{9} m

5 0
3 years ago
What is the difference between a graph of linear motion and a graph of harmonic motion?
fredd [130]
Hope this helps :)

When describing linear motion, you need only one graph representing each of the three terms, while projectile motion requires a graph of the x and y axes. Graphs of simple harmonic motion are sine curves. Circular motion is different from other forms of motion because the speed of the object is constant.
5 0
3 years ago
When a piece of copper is taken to the moon , a change will be observed in it's ?​
SpyIntel [72]
Weight. Because there is less gravity on the moon.
3 0
3 years ago
Other questions:
  • Earthquakes along the subduction zones near Sumatra and Chile are some of the strongest in
    15·1 answer
  • Can you access an instance variable from a static method? explain why or why not.
    11·1 answer
  • A heavy rock is shot upward from the edge of a vertical cliff. It leaves the edge of the cliff with an initial velocity of 12 m/
    11·1 answer
  • Long, long ago, on a planet far, far away, a physics experiment was carried out. First, a 0.210-kg ball with zero net charge was
    7·1 answer
  • A train at a constant 79.0 km/h moves east for 27.0 min, then in a direction 50.0° east of due north for 29.0 min, and then west
    8·1 answer
  • A passenger jet flies from one airport to another 1,273 miles away in 2.2 h. find its average speed.
    14·2 answers
  • What effect do shiny metals have on radiant energy?
    8·2 answers
  • 2 % of freshwater is locked in ______.
    10·1 answer
  • 300N effort is applied to lift the load of 900N by using a first class lever. If the distance between the load and fulcrum is 20
    5·2 answers
  • Hi im really confused:
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!