Rate=[a]*([b]^2)*([c]^(1/2)]
rate=[2a]*([b]^2)*([2c]^(1/2)]= 2*(2^(1/2)[a]*([b]^2)*([c]
it increases times 2*(2^(1/2)=2√2
Answer:
One way creativity is helpful to scientists is when they need to come up with a experiment or cure for something their imaginastion is very helpful. The reason for that is with creativity they could get answers much quicker!
Explanation:
Based on the solubility observations, barium & aluminum could be distinguished by the addition of sodium chloride to the solutions.
<h3>What happens when NaCl is added to a solution?</h3>
- The ionic link that held sodium and chloride ions together is broken when water molecules force the ions apart.
- The sodium and chloride atoms are encircled by water molecules after the salt compounds are separated. After that, the salt dissolves and forms a homogenous solution.
- In order to keep patients from dehydrating, sodium chloride, an important nutrient, is employed in healthcare. It is employed as a spice to improve flavor and as a food preservative. Additionally, sodium chloride is employed in the production of polymers and other goods. Additionally, it is used to de-ice sidewalks and roadways.
- Adding water to sodium chloride results in a physical change because no new product is created.
Learn more about sodium chloride added to a solution refer to :
brainly.com/question/28092739
#SPJ4
moles Cu produced : 0.002
<h3>Further explanation</h3>
Concentration of copper sulfate (CuSO₄) : 0.319 g/dm³
MW CuSO₄ :

mol CuSO₄ /dm³ :

CuSO₄⇒Cu²⁺ + SO₄²⁻
mol Cu : mol CuSO₄ = 1 : 1 , so mol Cu²⁺=0.002
This is an incomplete question, here is a complete question.
The conversion of cyclopropane to propene occurs with a first-order rate constant of 2.42 × 10⁻² hr⁻¹. How long will it take for the concentration of cyclopropane to decrease from an initial concentration 0.080 mol/L to 0.053 mol/L?
Answer : The time taken will be, 17.0 hr
Explanation :
Expression for rate law for first order kinetics is given by:

where,
k = rate constant = 
t = time passed by the sample = ?
a = initial concentration of the reactant = 0.080 M
a - x = concentration left = 0.053 M
Now put all the given values in above equation, we get


Therefore, the time taken will be, 17.0 hr