Answer:
Kinetic energy is the energy of motion so to figure out that it’s not changing is if the object is still moving. If it’s staying still or is at rest, it is presenting potential energy, which is when energy is being stored inside the object.
Answer: The coefficient in front of AgCl when the equation is properly balanced is 2.
Explanation:
According to the law of conservation of mass, mass can neither be created nor be destroyed. Thus the mass of products has to be equal to the mass of reactants. The number of atoms of each element has to be same on reactant and product side. Thus chemical equations are balanced.
Decomposition is a type of chemical reaction in which one reactant gives two or more than two products.
Decomposition of silver chloride is represented as:

Thus the coefficient in front of AgCl when the equation is properly balanced is 2.
<span>the bonds in iron(III) oxide are more ionic</span>
Answer:
81°C.
Explanation:
To solve this problem, we can use the relation:
<em>Q = m.c.ΔT,</em>
where, Q is the amount of heat released from water (Q = - 1200 J).
m is the mass of the water (m = 20.0 g).
c is the specific heat capacity of water (c of water = 4.186 J/g.°C).
ΔT is the difference between the initial and final temperature (ΔT = final T - initial T = final T - 95.0°C).
∵ Q = m.c.ΔT
∴ (- 1200 J) = (20.0 g)(4.186 J/g.°C)(final T - 95.0°C ).
(- 1200 J) = 83.72 final T - 7953.
∴ final T = (- 1200 J + 7953)/83.72 = 80.67°C ≅ 81.0°C.
<em>So, the right choice is: 81°C.</em>