Explanation:
Given that,
Electrostatic force, 
Distance, 
(a)
, q is the charge on the ion


(b) Let n is the number of electrons are missing from each ion. It can be calculated as :


n = 2
Hence, this is the required solution.
Answer:
The focal length of the lens is 34.047 cm
The power of the needed corrective lens is 2.937 diopter.
Explanation:
Distance of the object from the lens,u = 26 cm
Distance of the image from the lens ,v= -110 cm
(Image is forming on the other side of the lens)
Since ,lens of the human eye is converging lens,convex lens.
Using a lens formula:


f = 34.047 cm = 0.3404 m
Power of the lens = P

When the Sun's energy moves through space, it reaches Earth's atmosphere and finally the surface. This radiant solar energy warms the atmosphere and becomes heat energy. This heat energy is transferred throughout the planet's systems in three ways: by radiation, conduction, and convection.
Answer:a) 34.5 N; b) 24.5 N; c) 10 N; d) 1J
Explanation: In order to solve this problem we have to used the second Newton law given by:
∑F= m*a
F-f=m*a where f is the friction force (uk*Normal), from this we have
F= m*a+f=5 Kg*2 m/s^2+0.5*5Kg*9.8 m/s^2= 34.5 N
then f=uk*N=0.5*5Kg*9.8 m/s^2= 24.5N
the net Force = (34.5-24.5)N= 10 N
Finally the work done by the net force is equal to kinetic energy change so
W=∫Force net*dr= 10 N* 0.1 m= 1J
Answer:
COMPLETE QUESTION
A spring stretches by 0.018 m when a 2.8-kg object is suspended from its end. How much mass should be attached to this spring so that its frequency of vibration is f = 3.0 Hz?
Explanation:
Given that,
Extension of spring
x = 0.0208m
Mass attached m = 3.39kg
Additional mass to have a frequency f
Let the additional mass be m
Using Hooke's law
F= kx
Where F = W = mg = 3.39 ×9.81
F = 33.26N
Then,
F = kx
k = F/x
k = 33.26/0.0208
k = 1598.84 N/m
The frequency is given as
f = ½π√k/m
Make m subject of formula
f² = ¼π² •(k/m
4π²f² = k/m
Then, m4π²f² = k
So, m = k/(4π²f²)
So, this is the general formula,
Then let use the frequency above
f = 3Hz
m = 1598.84/(4×π²×3²)
m = 4.5 kg