The average power produced by the soccer player is 710 Watts.
Given the data in the question;
- Mass of the soccer player;

- Energy used by the soccer player;

- Time;

Power; 
Power is simply the amount of energy converted or transferred per unit time. It is expressed as:

We substitute our given values into the equation
![Power = \frac{5100000J}{7200s}\\\\Power = 708.33J/s \\\\Power = 710J/s \ \ \ \ \ [ 2\ Significant\ Figures]\\\\Power = 710W](https://tex.z-dn.net/?f=Power%20%3D%20%5Cfrac%7B5100000J%7D%7B7200s%7D%5C%5C%5C%5CPower%20%3D%20708.33J%2Fs%20%5C%5C%5C%5CPower%20%3D%20710J%2Fs%20%5C%20%5C%20%5C%20%5C%20%5C%20%5B%202%5C%20Significant%5C%20Figures%5D%5C%5C%5C%5CPower%20%3D%20710W)
Therefore, the average power produced by the soccer player is 710 Watts.
Learn more: brainly.com/question/20953664
Answer:
true,true,false
Explanation:
its false because if it is equal it would show an arrow pointing left and a 20 and the same for the right
Answer:
Balanced forces: When a number of forces acting on a body do not cause any change in its state of rest or of uniform motion along a straight line then the forces are said to be balanced forces. In other words, a body is said to be underbalanced forced when the resulting force acting on the body is zero.
The balanced forces:
⋅ Cannot set any stationary body into motion.
⋅ May change the shape and size of soft objects.
⋅ Cannot change the speed/velocity of a moving body.
Unbalanced forces:
When the resultant of all the forces acting on a body is not zero, then forces are called unbalanced forces.
Example:
⋅ Game of tug of war: When the forces exerted by both the teams are equal, then the rope does not move. But, if the force applied by team A is greater than team B, then the rope, as well as members of the weaker team, i.e., B, will be pulled towards A. The unbalanced force can (a) Set a stationary body in motion.
⋅ Set a moving body at rest.
⋅ Change the direction of motion.
Explanation:
give me an one thanks please
Answer:
8.61 min
Explanation:
original mass= 12.65
first half life = 12.65/2 = 6.325
second half life = 6.325/2 = 3.1625
Note : 3.1625 is the closest to the value (3.115) given so we work with it
total time for decay =17.22
therefore two decays = 17.22/2= 8.61
Answer:
Explanation:
Total energy is constant
E = mgh + ½mv² + Fd
At the top of the slide, all energy is potential
E = mgh + 0 + 0
At the bottom of the slide, all potential energy has converted to kinetic and work of friction.
mgh = ½mv² + W
W = mgh - ½mv²
W = 30.0[(9.81)(2.0) - ½6²]
W = 48.6 J