So you have evidence that the experiment is true or correct.
Answer:
2.5L [NaCl] concentrate needs to be 4.8 Molar solution before dilution to prep 10L of 1.2M KNO₃ solution.
Explanation:
Generally, moles of solute in solution before dilution must equal moles of solute after dilution.
By definition Molarity = moles solute/volume of solution in Liters
=> moles solute = Molarity x Volume (L)
Apply moles before dilution = moles after dilution ...
=> (Molarity X Volume)before dilution = (Molarity X Volume)after dilution
=> (M)(2.5L)before = (1.2M)(10.0L)after
=> Molarity of 2.5L concentrate = (1.2M)(10.0L)/(2.5L) = 4.8 Molar concentrate
The answer is A, because of the chemical reaction taking place color can change (as in this case). Hope it helps!
<span>(a) what is the average volume (in cubic meters) required for each iron atom
For this case, the density of Iron would be </span>7.87g/cm³
<span>
V = 9.27 x 10^-26 kg / </span>7.87g/cm<span>³ ( 1 kg / 1000 g)
</span>V = 1.18 x 10-23 cm³<span>
(b) what is the distance (in meters) between the centers of adjacent atoms?
We assume the atoms as cube, so we use the volume of the cube to calculate the distance of the atoms.
V = </span>1.18 x 10-23 cm<span>³ = s</span>³
s = 2.28 x 10^-8 cm
Quantitative observations include numerical data. Ex: 32 degrees, 10 inches, etc.