Answer:
Reduction of Aldehydes and Ketones. Hydride reacts with the carbonyl group, C=O, in aldehydes or ketones to give alcohols. ... Reduction of ketones gives secondary alcohols. The acidic work-up converts an intermediate metal alkoxide salt into the desired alcohol via a simple acid base reaction.
The carbon atom of a carboxyl group is in a relatively high oxidation state. Diborane, B2H6, reduces the carboxyl group in a similar fashion. ... Sodium borohydride, NaBH4, does not reduce carboxylic acids; however, hydrogen gas is liberated and salts of the acid are formed.
Primary alcohols can be oxidized to form aldehydes and carboxylic acids; secondary alcohols can be oxidized to give ketones. Tertiary alcohols, in contrast, cannot be oxidized without breaking the molecule's C–C bonds.
A secondary alcohol can be oxidised into a ketone using acidified potassium dichromate and heating under reflux. The orange-red dichromate ion, Cr2O72−, is reduced to the green Cr3+ ion. This reaction was once used in an alcohol breath test.
hope it will help u
Answer: sand, silt, and clay.
<span>Bonds of reactants are broken and create new bonds to form different products and produces exothermic and endothermic reactions.
You are able to see a chemical reaction occur through a few signs
hope this helps
</span>
Answer:
30 g of magnesium would be combined with 20 g of oxygen. The law used solving this problem is the Lavoisier Law of conservation of mass.
Explanation:
If 60 g of magnesium combines with 40 g of oxygen to make 100 g of magnesium oxide, then 30 g of magnesium will combine with 20 g of oxygen to make 50 g of magnesium oxide.
This happens because in a chemical reaction there is no creation or descruction of atoms, only a rearrangement. Therefore, the mass of reactants should be equal to the mass of products.
The following equation represents the proportions of the substances:
Mg + 1/2O₂ → MgO