Answer:
The magnitude of the magnetic field is 1.83 x
T.
Explanation:
The flow of an electric current in a straight wire induces magnetic field around the wire. When current is flowing through two wires in the same direction, a force of attraction exists between the wires. But if the current flows in opposite directions, the force of repulsion is felt by the wires.
In the given question, the direction of flow of current through the wires is opposite, thus both wires applies the same field on each other. The result to repulsion between them.
The magnetic field (B) between the given wires can be determined by:
B = 
where: I is the current, r is the distance between the wires and
is the magnetic field constant.
But, I = 11 A, r = 0.12 m and
= 4
x
Tm/A
So that;
B = 
= 1.8333 x 
B = 1.83 x
T
Pushing a broke down car, even done by more than one person, is difficult especially if the distance to be covered is quite far. A car is heavy and it requires a lot of force to start the car moving. This is because the inertia of the car to remain at rest is great. Additionally, the force applied in pushing the car must be greater than the frictional force to cause it to accelerate. The frictional force is dependent on the mass of the object which means that the frictional force acting on the car is also great. Finally, with every push of the car, the frictional force will always be present and acting on the opposite direction. The push that will be supplied must be sustained all throughout.
Answer:
The frequency of the wave is 5 x 10⁹ Hz
Explanation:
Given;
wavelength of the radio wave, λ = 6.0 × 10⁻²m
radio wave is an example of electromagnetic wave, and electromagnetic waves travel with speed of light, which is equal to 3 x 10⁸ m/s².
Applying wave equation;
V = F λ
where;
V is the speed of the wave
F is the frequency of the wave
λ is the wavelength
Make F the subject of the formula
F = V / λ
F = (3 x 10⁸) / (6.0 × 10⁻²)
F = 5 x 10⁹ Hz
Therefore, the frequency of the wave is 5 x 10⁹ Hz
Answers:
a) 5400000 J
b) 45.92 m
Explanation:
a) The kinetic energy
of an object is given by:

Where:
is the mass of the train
is the speed of the train
Solving the equation:

This is the train's kinetic energy at its top speed
b) Now, according to the Conservation of Energy Law, the total initial energy is equal to the total final energy:


Where:
is the train's initial kinetic energy
is the train's initial potential energy
is the train's final kinetic energy
is the train's final potential energy, where
is the acceleration due gravity and
is the height.
Rewriting the equation with the given values:

Finding
: