I think it is False because as the Gad relajases fuel it doesn’t move as much anymore
<span>118 C
The Clausius-Clapeyron equation is useful in calculating the boiling point of a liquid at various pressures. It is:
Tb = 1/(1/T0 - R ln(P/P0)/Hvap)
where
Tb = Temperature boiling
R = Ideal Gas Constant (8.3144598 J/(K*mol) )
P = Pressure of interest
Hvap = Heat of vaporization of the liquid
T0, P0 = Temperature and pressure at a known point.
The temperatures are absolute temperatures.
We know that water boils at 100C at 14.7 psi. Yes, it's ugly to be mixing metric and imperial units like that. But since we're only interested in relative pressure differences, it's safe enough. So
P0 = 14.7
P = 14.7 + 12.3 = 27
T0 = 100 + 273.15 = 373.15
And for water, the heat of vaporization per mole is 40660 J/mol
Let's substitute the known values and calculate.
Tb = 1/(1/T0 - R ln(P/P0)/Hvap)
Tb = 1/(1/373.15 K - 8.3144598 J/(K*mol) ln(27/14.7)/40660 J/mol)
Tb = 1/(0.002679887 1/K - 8.3144598 1/K ln(1.836734694)/40660)
Tb = 1/(0.002679887 1/K - 8.3144598 1/K 0.607989372/40660)
Tb = 1/(0.002679887 1/K - 5.055103194 1/K /40660)
Tb = 1/(0.002679887 1/K - 0.000124326 1/K)
Tb = 1/(0.002555561 1/K)
Tb = 391.3034763 K
Tb = 391.3034763 K - 273.15
Tb = 118.1534763 C
Rounding to 3 significant figures gives 118 C</span>
E. Nonsense longitudinal waves have all of these properties
Answer:
The answer is D or Fertilizer, sorry for the late answer
Explanation:
Answer:
d) 0 V
Explanation:
It can be showed that the potential due to a point charge q, to a distance d from the charge, can be expressed as follows:

where k = 
As the potential is an scalar, and is linear with the charge, we can apply the superposition principle, which means that we can find the potential due to one of the charges, as if the other were not present.
By symmetry, all four charges are at the same distance from the center, so we can write the total potential, as follows:

where d, is the semi-diagonal of the square, that we can find applying Pythagorean theorem, as follows:

Replacing by the values in (1) we have:

which is equal to the option d).