1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vikentia [17]
3 years ago
13

The heat capacity of 0.125Kg of water is measured to be 523j/k at a room temperature.Hence, calculate the heat capacity of water

Physics
1 answer:
Naily [24]3 years ago
5 0

Answer:

A. 4148 J/K/Kg

B. 4148 J/K/L

Explanation:

A. Heat capacity per unit mass is known as the specific heat capacity, c.

C = Heat capacity/mass(kg)

C = (523 J/K) / 0.125 Kg = 4148 J/K/Kg

B. Volume of water = mass/density

Density of water = 1 Kg/L

Volume of water = 0.125 Kg/ 1Kg/L

Volume of water = 0.125 L

Heat capacity per unit volume = (523 J/K) / 0.125 L

Heat capacity per unit volume = 4148 J/K/L

You might be interested in
Two long, straight wires are separated by 0.120 m. The wires carry currents of 11 A in opposite directions, as the drawing indic
rewona [7]

Answer:

The magnitude of the magnetic field is 1.83 x 10^{-5} T.

Explanation:

The flow of an electric current in a straight wire induces magnetic field around the wire. When current is flowing through two wires in the same direction, a force of attraction exists between the wires. But if the current flows in opposite directions, the force of repulsion is felt by the wires.

In the given question, the direction of flow of current through the wires is opposite, thus both wires applies the same field on each other. The result to repulsion between them.

The magnetic field (B) between the given wires can be determined by:

B = \frac{U_{o}I }{2\pi r}

where: I is the current, r is the distance between the wires and U_{0} is the magnetic field constant.

But, I = 11 A, r = 0.12 m and U_{0} = 4\pi x 10^{-7} Tm/A

So that;

B = \frac{4\pi *10^{-7}*11 }{2\pi *0.12}

   = 1.8333 x 10^{-5}

B = 1.83 x 10^{-5} T

6 0
2 years ago
A 12 kg box is at rest on your kitchen counter, which your cat is pawing at with a horizontal force of 40 N. If the coefficient
murzikaleks [220]

Answer; I think it's False.

8 0
3 years ago
Tim's car breaks down just down the street from his house. he and his friends decide to try to push it to his house. using newto
daser333 [38]
Pushing a broke down car, even done by more than one person, is difficult especially if the distance to be covered is quite far. A car is heavy and it requires a lot of force to start the car moving. This is because the inertia of the car to remain at rest is great. Additionally, the force applied in pushing the car must be greater than the frictional force to cause it to accelerate. The frictional force is dependent on the mass of the object which means that the frictional force acting on the car is also great. Finally, with every push of the car, the frictional force will always be present and acting on the opposite direction. The push that will be supplied must be sustained all throughout.
6 0
3 years ago
Read 2 more answers
A certain radio wave has a wavelength of 6.0 × 10-2m. What is its frequency in hertz?
rodikova [14]

Answer:

The frequency of the wave is 5 x 10⁹ Hz

Explanation:

Given;

wavelength of the radio wave, λ = 6.0 × 10⁻²m

radio wave is an example of electromagnetic wave, and electromagnetic waves travel with speed of light, which is equal to 3 x 10⁸ m/s².

Applying wave equation;

V = F λ

where;

V is the speed of the wave

F is the frequency of the wave

λ  is the wavelength

Make F the subject of the formula

F = V /  λ

F = (3 x 10⁸) / (6.0 × 10⁻²)

F = 5 x 10⁹ Hz

Therefore, the frequency of the wave is 5 x 10⁹ Hz

8 0
3 years ago
Read the scenario and solve these two problems.
Burka [1]

Answers:

a) 5400000 J

b) 45.92 m

Explanation:

a) The kinetic energy K of an object is given by:

K=\frac{1}{2}mV^{2}

Where:

m=12000 kg is the mass of the train

V=30 m/s is the speed of the train

Solving the equation:

K=\frac{1}{2}(12000 kg)(30 m/s)^{2}

K=5400000 J This is the train's kinetic energy at its top speed

b) Now, according to the Conservation of Energy Law, the total initial energy is equal to the total final energy:

E_{i}=E_{f}

K_{i}+P_{i}=K_{f}+P_{f}

Where:

K_{i}=5400000 J is the train's initial kinetic energy

P_{i}=0 J is the train's initial potential energy

K_{f}=0 J is the train's final kinetic energy

P_{f}=mgh is the train's final potential energy, where g=9.8 m/s^{2} is the acceleration due gravity and h is the height.

Rewriting the equation with the given values:

5400000 J=(12000 kg)(9.8 m/s^{2})h

Finding h:

h=45.918 m \approx 45.92 m

7 0
2 years ago
Read 2 more answers
Other questions:
  • Which is the direction of in stantaneous velocity for angular path
    15·1 answer
  • A bug flies at a velocity of 0.75 m/s into an oncoming breeze blowing at 0.25 m/s. What is the resultant velocity of the bug?
    8·1 answer
  • Compare and Contrast refracting and reflecting microscopes?
    9·1 answer
  • What force would have to win out in order for the Big Crunch to occur?
    13·1 answer
  • You notice that heat is released during a chemical reaction. This reaction is a(n) _______ reaction. endothermic heat hot exothe
    11·1 answer
  • Type the correct answer in the box. Spell all words correctly.
    14·1 answer
  • ) A friend of yours complains that he often has lower back pain. One day while he picks up a package, you notice he bends at his
    6·1 answer
  • You are on a boat cruising at 10 m/s when you decide to accelerate at 5 m/s^2 until you reach a speed of 30 m/s.
    5·1 answer
  • A car 4m long moving at a velocity of 25m/s was beside a lorry 20m long with a velocity 19m/s at t=0. The distance between them
    6·1 answer
  • Gravity is a force that pulls an object down towards the Earth. Can we see the force of gravity?
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!