The answer is A I’m not 100 percent sure tho
Of heating. Or when the lake is exposed to boil because of the temperature.
Explanation:
mass H2O2 = 55 mL(1.407 g/mL) = 80.85 g
molar mass H2O2 = 2(1.01 g/mol) + 2(16.00 g/mol) = 34.02 g/mol
moles H2O2 = 80.85 g/34.02 g/mol = 2.377 moles H2O2
For each mole of H2O2 you obtain 0.5 mole of O2 (see the equation).
moles O2 = 2.377 moles H2O2 (1 mole O2)/(2 moles H2O2) = 1.188 moles O2
Now, you need the temperature. If you are at STP (273 K, and 1.00 atm) then 1 mole of an ideal gas at STP has a volume of 22.4 L. Without temperature you are not really able to continue. I will assume you are at STP.
Volume O2 = 1.188 moles O2(22.4 L/mole) = 0.0530 L of O2.
which is 53 mL.
<h3>
Answer:</h3>
P₂ = 0.67 atm
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality<u>
</u>
<u>Chemistry</u>
<u>Gas Laws</u>
Boyle's Law: P₁V₁ = P₂V₂
- P₁ is pressure 1
- V₁ is volume 1
- P₂ is pressure 2
- V₂ is volume 2
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[Given] P₁ = 2.02 atm
[Given] V₁ = 4.0 L
[Given] V₂ = 12.0 L
[Solve] P₂
<u>Step 2: Solve</u>
- Substitute in variables [Boyle's Law]: (2.02 atm)(4.0 L) = P₂(12.0 L)
- [Pressure] Multiply: 8.08 atm · L = P₂(12.0 L)
- [Pressure] [Division Property of Equality] Isolate unknown: 0.673333 atm = P₂
- [Pressure] Rewrite: P₂ = 0.673333 atm
<u>Step 3: Check</u>
<em>Follow sig fig rules and round. We are given 2 sig figs as our smallest.</em>
0.673333 atm ≈ 0.67 atm
3 subatomic particles in the nucleus
which is proton(24),neutron (28) and electrons(24)